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 Abstract: Reliability is a major concern in 
advanced electronic circuits. To ensure that 
errors do not affect  the  circuit  
functionality  a  number  of  mitigation  
techniques  can  be  used.  Among  them,  
Error Correction  Codes  (ECC)  are  
commonly  used  to  protect  memories  and  
registers  in  electronic circuits. When  
ECCs  are  used,  it  is  of  interest  that  in  
addition  to  correcting  a  given  number  of 
errors,  the  code  can  also  detect  errors  
exceeding  that  number.  This ensures that 
uncorrectable errors are detected and 
therefore silent data corruption does not 
occur. Among the ECCs used to protect 
circuits, one option is Orthogonal Latin 
Squares (OLS) codes for which encoding 
and decoding can be efficiently 
implemented.  In this paper, an HDL 
implementation of SRAM based error 
detection and correction using OLS CODES 
is designed. The proposed design is applied 
to SRAM and reduces the probability of 
silent data corruption by implementing 
mechanisms to detect errors that affect two 
bits. 
 
Keywords—Concurrent  error  detection,  error  
correction  codes  (ECC),  Latin  squares,  
majority  logic  decoding (MLD), parity, 
memory. 
 

1. INTRODUCTION 
 
The general idea for achieving error 
detection and correction is to add some 
redundancy  which  means to add some 
extra  data  to  a  message,  which  receiver  
can  use  to  check  uniformity  of  the  

delivered  message,  and  to  pick  up  data 
determined to be corrupt. Error-detection 
and correction scheme may be systematic or 
it may be non-systematic. In the system of 
the module non-systematic code, an 
encoded is achieved by transformation of 
the message which  has  least possibility  of  
number  of  bits  present  in  the  message  
which  is  being  converted.  Another  
classification  is  the  type  of  systematic 
module unique data is sent by the 
transmitter which is attached by a fixed 
number of parity data like check bits  that  
obtained  from  the  data  bits.  The  receiver  
applies  the  same  algorithm  when  only  
detection  of  the  error  is required to the 
received data bits which is then compared 
with its output with the receive check bits if 
the values does not match, there we 
conclude that an error has crept at some 
point in the process of transmission. Error 
correcting codes are regularly used in lower-
layer communication, as well as for reliable 
storage in media such as CDs, DVDs, hard 
disks and RAM. 
 

Provision  against  soft  errors  that  
apparent  they  as  the  bit-flips  in  memory  
is  the  main  motto  of  error  detection  and  
correction. Several techniques are used 
present to midi gate upsets in memories. For 
example, the Bose – Chaudhuri– 
Hocquenghem codes, Reed–Solomon codes, 
punctured difference set codes, and matrix 
codes has been used to contact with MCUs 
in memories. But the above codes 
mentioned requires more area, power, and 
delay overheads since the  encoding and 
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decoding circuits are more complex in these 
complicated codes. Reed-Muller code is 
another protection  code  that  is  able  to  
detect  and  correct  additional  error  
besides  a  Hamming  code.  But the major 
drawback of this protection code is the more 
area it requires and the power penalties. 

 
Reliability is a major issue for 

advanced electronic circuits.  As technology 
scales, circuits become more  vulnerable  to  
error  sources  such  as  noise  and  radiation  
and  also  to  manufacturing  defects  and 
process variations. A number of error 
mitigation techniques can be used to ensure 
that errors do not compromise the circuit 
functionality. Among those, Error 
Correction Codes (ECCs) are commonly 
used to protect memories or registers. 
Traditionally, Single Error Correction 
(SEC) codes that can correct one bit error in 
a word are used as they are simple to 
implement and require few additional bits. 
A SEC code requires a minimum Hamming 
distance between code-words of three. This 

means that if a double  error  occurs,  the  
erroneous  word  can  be  at  distance  of  
one  from  another  valid  word.  In that 
case, the decoder will miss-correct the word 
creating an undetected error. To avoid this 
issue, Single Error Correction Double Error 
Detection (SEC-DED) codes can be used.  
Those codes have a minimum Hamming 
distance of four. Therefore, a double error 
can in the worst case cause the word to be at 
a distance of two of any other valid word so 
that miss-correction is not possible. More 
generally, for a code that can correct t 
errors, it is of interest to also detect t+1 
error. This reduces the probability of 
undetected errors that can cause Silent Data 
Corruption (SDC). SDC is especially 
dangerous as the system continues its 
operation unaware of the error and this can 
lead to further data corruption or to an 
erroneous behavior long after the original 
error occurred. 

 
 
 

 
 

Fig 1: Design Block diagram 
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2. ORTHOGONAL LATIN 

SQUARE CODES 
 
 The concept of Latin squares and 
their applications are well known [12]. A 
Latin square of size m is an m* m matrix 
that has permutations of the digits 0,1,.. M-1 
in both its rows and columns. For each 
value of m there can be more than one Latin 
square. When that is the case, two Latin 
squares are said to  be  orthogonal  if  when  
they  are  superimposed  every  ordered  pair  
of  elements  appears  only  once. 
Orthogonal Latin Squares (OLS) codes are 
derived from Orthogonal Latin squares [9]. 
These codes have k=m2 data bits and 2tm 
check bits where t is the number of errors 
that the code can correct. For a Double 
Error Correction (DEC) code t=2 and 
therefore 4m check bits are used. One 
advantage of OLS codes is that their 
construction is modular. This means that to 
obtain a code that can correct t+1 errors, 
simply 2m check bits are added to the code 
that can correct t errors. The modular 
property enables the selection of the error 
correction capability for a given word size. 
As  mentioned  in  the  introduction,  OLS  
codes  can  be  decoded  using  One  Step  
Majority  Logic Decoding  (OS-MLD)  as  
each  data  bit  participates  in  exactly  2t  
check  bits  and  each  other  bit  participates 
in at most one of those check bits. This 
enables a simple correction when the 
number of bits in error is t or less. The 2t 
check bits are recomputed and a majority 
vote is taken, if a value of one is  obtained,  
the  bit  is  in  error  and  must  be  
corrected.  Otherwise the bit is correct.    As  
long  as  the number of errors is  t  or less  
this ensures the error correction as the 
remaining  t-1  errors can, in the worst case 
affect t-1 check bits so that still a majority 
of t+1 triggers the correction of an 
erroneous bit. For an OLS code that can 
correct t errors using OS-MLD, t+1 error 
can cause miss-corrections. This occurs for 
example if the errors affect t+1 parity bits in 

which bit di participates as this bit will be 
miss-corrected. The same occurs when the 
number of errors is larger than t+1. Each of 
the 2t check bits in which a data bit 
participates is taken from a group of m 
parity bits. Those groups are bits 1 to m, 
m+1 to 2m, 2m+1 to 3m and 3m+1 to 4m. 

 
3. DESIGN ASPECTS 

 
3.1 PARITY CHECK MATRIX 

 
Fig 2: Parity check matrix for OLS code   having 

k=16 and t=2 
 The H‟ matrix for OLS codes is 
build from their properties. The matrix is 
capable of correcting single type error. By 
the  fact  that  in  direction  of  the  modular  
structure  it  might  be  able  to  correct  
many  errors.  They have check bits of 
number “2tm” in which, „t‟ stands for 
numeral of errors such that code corrects. If 
we wanted to correct a double bit then we 
have „2‟ as the value of t and thereby the 
check bits required are 4m.the H matrix, of 
Single Error Code „OLS‟ code is construct 
as : 

 
 
a. In the above, I2m is the identity matrix of 
size 2 m. 
b. M1, M2 is the matrices of given size m × 
m2.  
„‟The matrix M1 have m ones in respective 
rows. For the rth row, the 1‟s are at the 
position (r − 1) × m + 1,(r − 1)× m + 
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2,………….(r − 1) × m+ m − 1, (r − 1) × m 
+ m”. The matrix M2 is structured as: 
M2 = [Im Im . . . Im]                   (2) 
 
For the given value 4 for m, the matrices 
M1 and M2 can be evidently experiential in 
Fig. H Matrix in the check bits we remove is 
evidently the G Matrix: 

 
 
On concluding the above mentioned, it is 
evident that the encoder is intriguing m2 
data bits and computing 2tm parity check 
bits by using G matrix . These resulted from 
the Latin Squares have the below properties: 
a. Exactly in 2t parity checks each info bit is 
involved. 
b. Utmost one in parity check bits info bits 
takes participation. We use the above 
properties in the later section to examine our 
proposed technique. 
The following are the modules included in 
the design: 
 
3.2 ENCODER: 
 

For every check bit, the 
corresponding data bits in the matrix shown 
in fig 2 are compared and check bit is 
generated.  

         Fig 3: Logic diagram for Encoding 

 
 
Suppose if odd number of ones are present 
check bit will be 1, if even number of ones 
are present check bit will be 0. In encoder 
we are generating parity bits for the given 
data. 
 
3.3 DECODER: 

Decoding consists of syndrome 
computation and error-correcting block. In 
decoder the encoded data from SRAM is 
given to syndrome computation where error 
is detected and then it is given to error 
correction block where error is corrected if 
error had occurred in syndrome 
computation. 
 
3.4 SYNDROME COMPUTATION: 
 
 Data collected from the encoder 
contains information bits and the check bits. 
For easy computation check bits are divided 
into four groups as C0-C3, C4-C7, C8-C11, 
and C12-C15. The output obtained from the 
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encoder is given as an input to the syndrome 
computation which is compared with the 
check bits. If both are equal, no error has 
been detected. Syndrome computation is 
shown in Fig 6. 
 
 3.5 ERROR CORRECTION: 
 

OS-MLD is a simple procedure in 
which each bit is decoded by simply taking 
the majority value of the set of the 
recomputed parity check equations, in 
which it participates [6]. This is shown in 
fig 4 for a given data bit di. The reasoning 
behind OS-MLD is that when an error 
occurs in bit di, the recomputed parity 
checks in which it participates will take a 
value of one. Therefore, a majority of ones 
in those recomputed checks is an indication 
that the bit is in error and therefore needs to 
be corrected. However, it may also occur 
that errors in other bits different from di 
provoke a majority of ones that would cause 
mis-correction. For a few codes, their 
properties ensure that this mis-correction 
cannot occur, and therefore OS-MLD can be 
used. For example, the first column that 
corresponds to the first data bit has ones in 
positions 0, 4, 8, and 12. For OLS codes, as 
described before, the decoding is done by 
taking a majority vote of the syndrome bits 
in which the bit participates (0, 4, 8, and 12 
in our example). 

 

Fig 4: Error correction block 
 
 

If the majority is one, then the data bit is in 
error and is corrected by inverting the bit. 
In the example of Fig.2, all the data bits 
(first 16 columns) participate in exactly four 
parity bits (2t) and each pair of columns 
share at most one position with a value of 
one. 
 
3.6 SRAM: 
 
SRAM is defined as static random access 
memory. It is type of semi conductor 
memory that uses bi-stable latching circuitry 
to store each bit. It is faster and more 
expensive than DRAM. It requires less 
power. In SRAM all the operations are 
controlled in control logic. When reset is 
equal to zero, whatever data from encoder is 
written to SRAM. In SRAM whenever read 
enable is one the encoded in data SRAM is 
given to decoder. 
 
SRAM contains three states: 

1. Write state 
2. Read state and 
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3. Stable state 
 
 
 
 
  

 

  Fig 5: SRAM Block diagram 
 

SRAM is random access memory 
that retains data bits in its memory as long 
as power is supplied unlike DRAM. SRAM 
does not have to be periodically refreshing 
circuit. Block diagram of SRAM is shown 
in Fig 5. In this project we have corrected 
and detected the errors occurred in data of 
SRAM.
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         Fig 6: Syndrome Computation 

 

 
 

4. SIMULATION RESULTS 
 

 
Fig 7: Waveform for data with error 

 

 
 
 

 
 

Fig 8: Waveform for data without any error 
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Fig 9: Top schematic 

The efficiency of the work is analyzed using 
synopsis tools for both simulation and 
synthesis report. In Fig.7 and 8 it shows that 
error in data and without error in data. 
Fig. 9 is schematic of the top design. 
 

 IMPLEMENTATION 
 

REPORTS k=16 

AREA 12868.71nms 

POWER 63µw 

TIMING 19.65ns 
 

Table 1: Synthesis Report 
 

The above tabular form represents Synthesis 
Report about the Area, Delay and Power 
Consumption for top design by Synopsis 
tool. 
 

5. CONCLUSION 
 

In this brief, a method to extend OLS 
codes has been proposed. The method has been 
used to derive extended double ECCs for 
different block sizes. The extended codes have 
the same number of parity bits as the original 
OLS codes but a larger number of data bits. 
Therefore, the relative overhead is smaller. In 
encoder we generate parity bits, which are 
written into SRAM and then the output is given 
as input to the decoder. There error is detected 
in the syndrome computation and it is corrected 
in the error-correction block. In any case, as 
discussed in this brief, the proposed method is 

expected to provide better benefits for double 
ECCs. 
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