
 Volume 5, Issue 5 DEC 2016

IJRAET

HDL IMPLEMENTATION OF SRAM BASED
ERROR CORRECTION AND DETECTION

USING ORTHOGONAL LATIN SQUARE CODES

(1)Nallaparaju Sneha, PG Scholar in VLSI Design,
(2)Dr. K. Babulu, Professor, ECE Department,

(1)(2)UCEK, JNTUK, Kakinada

 Abstract: Reliability is a major concern in
advanced electronic circuits. To ensure that
errors do not affect the circuit
functionality a number of mitigation
techniques can be used. Among them,
Error Correction Codes (ECC) are
commonly used to protect memories and
registers in electronic circuits. When
ECCs are used, it is of interest that in
addition to correcting a given number of
errors, the code can also detect errors
exceeding that number. This ensures that
uncorrectable errors are detected and
therefore silent data corruption does not
occur. Among the ECCs used to protect
circuits, one option is Orthogonal Latin
Squares (OLS) codes for which encoding
and decoding can be efficiently
implemented. In this paper, an HDL
implementation of SRAM based error
detection and correction using OLS CODES
is designed. The proposed design is applied
to SRAM and reduces the probability of
silent data corruption by implementing
mechanisms to detect errors that affect two
bits.

Keywords—Concurrent error detection, error
correction codes (ECC), Latin squares,
majority logic decoding (MLD), parity,
memory.

1. INTRODUCTION

The general idea for achieving error
detection and correction is to add some
redundancy which means to add some
extra data to a message, which receiver
can use to check uniformity of the

delivered message, and to pick up data
determined to be corrupt. Error-detection
and correction scheme may be systematic or
it may be non-systematic. In the system of
the module non-systematic code, an
encoded is achieved by transformation of
the message which has least possibility of
number of bits present in the message
which is being converted. Another
classification is the type of systematic
module unique data is sent by the
transmitter which is attached by a fixed
number of parity data like check bits that
obtained from the data bits. The receiver
applies the same algorithm when only
detection of the error is required to the
received data bits which is then compared
with its output with the receive check bits if
the values does not match, there we
conclude that an error has crept at some
point in the process of transmission. Error
correcting codes are regularly used in lower-
layer communication, as well as for reliable
storage in media such as CDs, DVDs, hard
disks and RAM.

Provision against soft errors that
apparent they as the bit-flips in memory
is the main motto of error detection and
correction. Several techniques are used
present to midi gate upsets in memories. For
example, the Bose – Chaudhuri–
Hocquenghem codes, Reed–Solomon codes,
punctured difference set codes, and matrix
codes has been used to contact with MCUs
in memories. But the above codes
mentioned requires more area, power, and
delay overheads since the encoding and

Gurmeet
Typewritten Text
327

 Volume 5, Issue 5 DEC 2016

IJRAET

decoding circuits are more complex in these
complicated codes. Reed-Muller code is
another protection code that is able to
detect and correct additional error
besides a Hamming code. But the major
drawback of this protection code is the more
area it requires and the power penalties.

Reliability is a major issue for

advanced electronic circuits. As technology
scales, circuits become more vulnerable to
error sources such as noise and radiation
and also to manufacturing defects and
process variations. A number of error
mitigation techniques can be used to ensure
that errors do not compromise the circuit
functionality. Among those, Error
Correction Codes (ECCs) are commonly
used to protect memories or registers.
Traditionally, Single Error Correction
(SEC) codes that can correct one bit error in
a word are used as they are simple to
implement and require few additional bits.
A SEC code requires a minimum Hamming
distance between code-words of three. This

means that if a double error occurs, the
erroneous word can be at distance of
one from another valid word. In that
case, the decoder will miss-correct the word
creating an undetected error. To avoid this
issue, Single Error Correction Double Error
Detection (SEC-DED) codes can be used.
Those codes have a minimum Hamming
distance of four. Therefore, a double error
can in the worst case cause the word to be at
a distance of two of any other valid word so
that miss-correction is not possible. More
generally, for a code that can correct t
errors, it is of interest to also detect t+1
error. This reduces the probability of
undetected errors that can cause Silent Data
Corruption (SDC). SDC is especially
dangerous as the system continues its
operation unaware of the error and this can
lead to further data corruption or to an
erroneous behavior long after the original
error occurred.

Fig 1: Design Block diagram

Gurmeet
Typewritten Text
3

Gurmeet
Typewritten Text

Gurmeet
Typewritten Text
28

 Volume 5, Issue 5 DEC 2016

IJRAET

2. ORTHOGONAL LATIN

SQUARE CODES

 The concept of Latin squares and
their applications are well known [12]. A
Latin square of size m is an m* m matrix
that has permutations of the digits 0,1,.. M-1
in both its rows and columns. For each
value of m there can be more than one Latin
square. When that is the case, two Latin
squares are said to be orthogonal if when
they are superimposed every ordered pair
of elements appears only once.
Orthogonal Latin Squares (OLS) codes are
derived from Orthogonal Latin squares [9].
These codes have k=m2 data bits and 2tm
check bits where t is the number of errors
that the code can correct. For a Double
Error Correction (DEC) code t=2 and
therefore 4m check bits are used. One
advantage of OLS codes is that their
construction is modular. This means that to
obtain a code that can correct t+1 errors,
simply 2m check bits are added to the code
that can correct t errors. The modular
property enables the selection of the error
correction capability for a given word size.
As mentioned in the introduction, OLS
codes can be decoded using One Step
Majority Logic Decoding (OS-MLD) as
each data bit participates in exactly 2t
check bits and each other bit participates
in at most one of those check bits. This
enables a simple correction when the
number of bits in error is t or less. The 2t
check bits are recomputed and a majority
vote is taken, if a value of one is obtained,
the bit is in error and must be
corrected. Otherwise the bit is correct. As
long as the number of errors is t or less
this ensures the error correction as the
remaining t-1 errors can, in the worst case
affect t-1 check bits so that still a majority
of t+1 triggers the correction of an
erroneous bit. For an OLS code that can
correct t errors using OS-MLD, t+1 error
can cause miss-corrections. This occurs for
example if the errors affect t+1 parity bits in

which bit di participates as this bit will be
miss-corrected. The same occurs when the
number of errors is larger than t+1. Each of
the 2t check bits in which a data bit
participates is taken from a group of m
parity bits. Those groups are bits 1 to m,
m+1 to 2m, 2m+1 to 3m and 3m+1 to 4m.

3. DESIGN ASPECTS

3.1 PARITY CHECK MATRIX

Fig 2: Parity check matrix for OLS code having

k=16 and t=2
 The H‟ matrix for OLS codes is
build from their properties. The matrix is
capable of correcting single type error. By
the fact that in direction of the modular
structure it might be able to correct
many errors. They have check bits of
number “2tm” in which, „t‟ stands for
numeral of errors such that code corrects. If
we wanted to correct a double bit then we
have „2‟ as the value of t and thereby the
check bits required are 4m.the H matrix, of
Single Error Code „OLS‟ code is construct
as :

a. In the above, I2m is the identity matrix of
size 2 m.
b. M1, M2 is the matrices of given size m ×
m2.
„‟The matrix M1 have m ones in respective
rows. For the rth row, the 1‟s are at the
position (r − 1) × m + 1,(r − 1)× m +

Gurmeet
Typewritten Text
329

 Volume 5, Issue 5 DEC 2016

IJRAET

2,………….(r − 1) × m+ m − 1, (r − 1) × m
+ m”. The matrix M2 is structured as:
M2 = [Im Im . . . Im] (2)

For the given value 4 for m, the matrices
M1 and M2 can be evidently experiential in
Fig. H Matrix in the check bits we remove is
evidently the G Matrix:

On concluding the above mentioned, it is
evident that the encoder is intriguing m2
data bits and computing 2tm parity check
bits by using G matrix . These resulted from
the Latin Squares have the below properties:
a. Exactly in 2t parity checks each info bit is
involved.
b. Utmost one in parity check bits info bits
takes participation. We use the above
properties in the later section to examine our
proposed technique.
The following are the modules included in
the design:

3.2 ENCODER:

For every check bit, the
corresponding data bits in the matrix shown
in fig 2 are compared and check bit is
generated.

 Fig 3: Logic diagram for Encoding

Suppose if odd number of ones are present
check bit will be 1, if even number of ones
are present check bit will be 0. In encoder
we are generating parity bits for the given
data.

3.3 DECODER:

Decoding consists of syndrome
computation and error-correcting block. In
decoder the encoded data from SRAM is
given to syndrome computation where error
is detected and then it is given to error
correction block where error is corrected if
error had occurred in syndrome
computation.

3.4 SYNDROME COMPUTATION:

 Data collected from the encoder
contains information bits and the check bits.
For easy computation check bits are divided
into four groups as C0-C3, C4-C7, C8-C11,
and C12-C15. The output obtained from the

Gurmeet
Typewritten Text
330

 Volume 5, Issue 5 DEC 2016

IJRAET

encoder is given as an input to the syndrome
computation which is compared with the
check bits. If both are equal, no error has
been detected. Syndrome computation is
shown in Fig 6.

 3.5 ERROR CORRECTION:

OS-MLD is a simple procedure in
which each bit is decoded by simply taking
the majority value of the set of the
recomputed parity check equations, in
which it participates [6]. This is shown in
fig 4 for a given data bit di. The reasoning
behind OS-MLD is that when an error
occurs in bit di, the recomputed parity
checks in which it participates will take a
value of one. Therefore, a majority of ones
in those recomputed checks is an indication
that the bit is in error and therefore needs to
be corrected. However, it may also occur
that errors in other bits different from di
provoke a majority of ones that would cause
mis-correction. For a few codes, their
properties ensure that this mis-correction
cannot occur, and therefore OS-MLD can be
used. For example, the first column that
corresponds to the first data bit has ones in
positions 0, 4, 8, and 12. For OLS codes, as
described before, the decoding is done by
taking a majority vote of the syndrome bits
in which the bit participates (0, 4, 8, and 12
in our example).

Fig 4: Error correction block

If the majority is one, then the data bit is in
error and is corrected by inverting the bit.
In the example of Fig.2, all the data bits
(first 16 columns) participate in exactly four
parity bits (2t) and each pair of columns
share at most one position with a value of
one.

3.6 SRAM:

SRAM is defined as static random access
memory. It is type of semi conductor
memory that uses bi-stable latching circuitry
to store each bit. It is faster and more
expensive than DRAM. It requires less
power. In SRAM all the operations are
controlled in control logic. When reset is
equal to zero, whatever data from encoder is
written to SRAM. In SRAM whenever read
enable is one the encoded in data SRAM is
given to decoder.

SRAM contains three states:

1. Write state
2. Read state and

Gurmeet
Typewritten Text
331

 Volume 5, Issue 5 DEC 2016

IJRAET

3. Stable state

 Fig 5: SRAM Block diagram

SRAM is random access memory
that retains data bits in its memory as long
as power is supplied unlike DRAM. SRAM
does not have to be periodically refreshing
circuit. Block diagram of SRAM is shown
in Fig 5. In this project we have corrected
and detected the errors occurred in data of
SRAM.

Gurmeet
Typewritten Text
332

 Volume 5, Issue 5 DEC 2016

IJRAET

 Fig 6: Syndrome Computation

4. SIMULATION RESULTS

Fig 7: Waveform for data with error

Fig 8: Waveform for data without any error

Gurmeet
Typewritten Text
333

 Volume 5, Issue 5 DEC 2016

IJRAET

Fig 9: Top schematic

The efficiency of the work is analyzed using
synopsis tools for both simulation and
synthesis report. In Fig.7 and 8 it shows that
error in data and without error in data.
Fig. 9 is schematic of the top design.

 IMPLEMENTATION

REPORTS k=16

AREA 12868.71nms

POWER 63µw

TIMING 19.65ns

Table 1: Synthesis Report

The above tabular form represents Synthesis
Report about the Area, Delay and Power
Consumption for top design by Synopsis
tool.

5. CONCLUSION

In this brief, a method to extend OLS
codes has been proposed. The method has been
used to derive extended double ECCs for
different block sizes. The extended codes have
the same number of parity bits as the original
OLS codes but a larger number of data bits.
Therefore, the relative overhead is smaller. In
encoder we generate parity bits, which are
written into SRAM and then the output is given
as input to the decoder. There error is detected
in the syndrome computation and it is corrected
in the error-correction block. In any case, as
discussed in this brief, the proposed method is

expected to provide better benefits for double
ECCs.

6. REFERENCES

[1] C. L. Chen and M. Y. Hsiao, “Error-
correcting codes for semiconductor memory
applications: A state-of-the-art review,” IBM J.
Res. Develop., vol. 28, no. 2, pp. 124–134, Mar.
1984.
[2] E. Fujiwara, Code Design for Dependable
Systems: Theory and Practical Application.
New York: Wiley, 2006.
[3] A. Dutta and N. A. Touba, “Multiple bit
upset tolerant memory using a selective cycle
avoidance based SEC-DED-DAEC code,” in
Proc. IEEE VLSI Test Symp., May 2007, pp.
349–354.
[4] R. Naseer and J. Draper, “DEC ECC
design to improve memory reliability in sub -
100nm technologies,” in Proc. IEEE Int.
Conf. Electron., Circuits, Syst., Sep. 2008, pp.
586–589.
[5] G. C. Cardarilli, M. Ottavi, S. Pontarelli, M.
Re, and A. Salsano, “Fault tolerant solid state
mass memory for space appl ications,” IEEE
Trans. Aerosp. Electron. Syst., vol. 41, no. 4,
pp. 1353–1372, Oct. 2005.
[6] S. Lin and D. J. Costello, Error Control
Coding, 2nd ed. Englewood Cliffs, NJ: Prentice-
Hall, 2004.
[7] S. Ghosh and P. D. Lincoln, “Dynamic low-
density parity check codes for fault-tolerant
nano-scale memory,” in Proc. Found. Nanosci.,
2007, pp. 1–5.
[8] H. Naeimi and A. DeHon, “Fault secure
encoder and decoder for nanoMemory
applications,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 17, no. 4, pp. 473–486,
Apr. 2009.

Gurmeet
Typewritten Text
334

Gurmeet
Typewritten Text

