
 Volume 5, Issue 4 SEP 2016

IJRAET

DESIGN AND COMPARISON OF LPC AND OLSC
 N.SUPRIYA HARINI 1 B.NIHAR2

Nallabharathkumar89@gmail.com1

1PG Scholar,Dept of ECE, Prasad Engineering College, Jangoan, Warangal, Telangana.
2Assistant professor, Dept of ECE, Prasad Engineering College, Jangoan, Warangal, Telangana.

Abstract— The capacity-achieving property of
polar codes has garnered much recent research
attention resulting in low complexity and high-
throughput hardware and software decoders. It
would be desirable to implement flexible
hardware for polar encoders and decoders that can
implement polar codes of different lengths and
rates; however this topic has not been studied in
depth yet. Flexibility is of significant importance
as it enables the communications system to adapt
to varying channel conditions and is mandated in
most communication standards. In this work, we
describe a low-complexity and flexible systematic
encoding algorithm, proves its correctness, and
uses it as basis for encoder implementations
capable of encoding any polar code up to a
maximum length. We also investigate hardware
and software implementations of decoders,
describing how to implement flexible decoders
that can decode any polar code up to a given
length with little overhead and minor impact on
decoding latency compared to code-specific
versions. We then demonstrate the application of
the proposed decoder in a quantum key
distribution setting, in conjunction with a new
sum-product approximation to improve
performance.

Key Words—polar codes, systematic encoding,
multi-code encoders, multi-code decoders.

I. Introduction

Modern communication systems must
cope with varying channel conditions and
differing throughput constraints. The 802.11-2012
wireless communication standards specify twelve
low-density parity-check (LDPC) codes of
different rate and length combinations; in addition
to convolutional codes. The overhead of building
a flexible LDPC decoder capable of decoding
different codes is significant, and creating flexible
LDPC decoders is an active area of research.
There has been much recent interest in Polar
codes, which achieve the symmetric capacity of
memory less channels with an explicit
construction and are decoded with the low
complexity successive-cancellation decoding
algorithm. It was also recently shown that polar
codes do not exhibit any error floor when
transmitted over symmetric binary-input memory
less channels. There have been several
implementations of polar decoders in the
literature, some of which are capable of decoding
polar codes of different rates given a fixed code
length.

 In this work, we show how this flexibility
can be extended to decode and also encode any
code of length n ≤ nmax . Polar codes were
initially introduced as non-systematic block codes.
Later, systematic polar encoding was described in
as a method to ease information extraction and
improve bit-error rate without affecting the frame-
error rate.

Gurmeet
Typewritten Text
92

 Volume 5, Issue 4 SEP 2016

IJRAET

The serial nature of this encoding (O(n ·
log n) time-complexity) places a speed limit on
the encoding process which gets worse with
increasing code length. In contrast, the non-
systematic encoder presented is parallel by
nature, and is amenable to very fast hardware
implementations. To address this, a new
systematic encoding algorithm that is easy to
parallelize was first described. This new encoding
algorithm offers the best of both worlds: on one
hand, it is systematic, and thus gains all the
advantages described above. On the other hand, it
is essentially equivalent to running the non-
systematic encoder twice. Thus, the prior art (and
future advances) used to implement fast non-
systematic encoders can be used as is to
implement a fast systematic encoder. We further
highlight that the systematic encoder in [6] is very
flexible: it can encode any polar code of a given
length by simply updating bit masks stored in
memory, without any other modifications to the
implementation.

The general idea for achieving error
detection and correction is to add some
redundancy which means to add some extra data
to a message, which receiver can use to
check uniformity of the delivered message,
and to pick up data determined to be corrupt.
Error-detection and correction scheme may be
systematic or it may be non-systematic. In the
system of the module non-systematic code, an
encoded is achieved by transformation of the
message which has least possibility of number
of bits present in the message which is being
converted. Another classification is the type of
systematic module unique data is sent by the
transmitter which is attached by a fixed number of
parity data like check bits that obtained from
the data bits. The receiver applies the same
algorithm when only detection of the error is
required to the received data bits which is then
compared with its output with the receive check
bits if the values does not match, there we
conclude that an error has crept at some point in
the process of transmission. Error correcting

codes are regularly used in lower-layer
communication, as well as for reliable storage in
media such as CDs, DVDs, hard disks and RAM.

Fig.1. Illustration of OS-MLD decoding for OLS
codes

Provision against soft errors that

apparent they as the bit-flips in memory is
the main motto of error detection and
correction. Several techniques are used present to
midi gate upsets in memories. For example, the
Bose – Chaudhuri– Hocquenghem codes, Reed–
Solomon codes, punctured difference set codes,
and matrix codes has been used to contact with
MCUs in memories. But the above codes
mentioned requires more area, power, and delay
overheads since the encoding and decoding
circuits are more complex in these complicated
codes. Reed-Muller code is another protection
code that is able to detect and correct
additional error besides a Hamming code. But
the major drawback of this protection code is the
more area it requires and the power penalties.

Reliability is a major issue for advanced
electronic circuits. As technology scales, circuits
become more vulnerable to error sources such
as noise and radiation and also to
manufacturing defects and process variations. A
number of error mitigation techniques can be used
to ensure that errors do not compromise the circuit
functionality. Among those, Error Correction
Codes (ECCs) are commonly used to protect
memories or registers. Traditionally, Single Error

Gurmeet
Typewritten Text
93

 Volume 5, Issue 4 SEP 2016

IJRAET

Correction (SEC) codes that can correct one bit
error in a word are used as they are simple to
implement and require few additional bits. A SEC
code requires a minimum Hamming distance
between code-words of three. This means that if a
double error occurs, the erroneous word can
be at distance of one from another valid
word. In that case, the decoder will miss-correct
the word creating an undetected error. To avoid
this issue, Single Error Correction Double Error
Detection (SEC-DED) codes can be used. Those
codes have a minimum Hamming distance of four.
Therefore, a double error can in the worst case
cause the word to be at a distance of two of any
other valid word so that miss-correction is not
possible. More generally, for a code that can
correct t errors, it is of interest to also detect t+1
errors. This reduces the probability of undetected
errors that can cause Silent Data Corruption
(SDC). SDC is especially dangerous as the system
continues its operation unaware of the error and
this can lead to further data corruption or to an
erroneous behavior long after the original error
occurred.

II. Literature Survey

 This section deals with the existing decoding
methodologies used for error detection. In error
detection and correction, majority logic decoding
is a method to decode repetition codes, based on
the assumption that the largest number of
occurrences of a symbol was the transmitted
symbol. Majority logic decoder is based on a
number of parity check equations which are
orthogonal to each other. So the majority result of
these parity check equations decide the
correctness of the current bit under decoding.

A. One Step Majority Logic Decoder

 As described in earlier, Majority-logic decoder
is a simple and effective decoder capable of
correcting multiple bit flips depending on the
number of parity checksum equations. It
consists of four parts: 1) a cyclic shift
register; 2) an XOR matrix; 3) a majority gate; 4)
an EXOR gate for error correction, as illustrated
in figure 2.

 Fig 2: One step Majority Logic Decoder for (15,
7) EG-LDPC Codes

 In one step majority logic decoding, initially
the code word is loaded into the cyclic shift
register. Then the check equations are
computed. The resulting sums are then
forwarded to the majority gate for evaluating
its correctness. If the number of 1‟s received in is
greater than the number of 0‟s which means that
the current bit under decoding is wrong, and a
signal to correct it would be triggered.
Otherwise the bit under decoding is correct and
no extra operations would be needed on it. In
next, the content of the registers are rotated and
the above procedure is repeated until codeword
bits have been processed. Finally, the parity check
sums should be zero if the codeword has been
correctly decoded. In this process, each bit may
be corrected only once. As a result, the decoding
circuitry is simple, but it requires a long decoding
time if the code word is large. Thus, by one-step
majority-logic decoding, the code is capable of
correcting any error pattern with two or fewer
errors . For example, for a code word of 15-bits,
the decoding would take 15 cycles, which would
be excessive for most applications
B. Majority Logic Decoder/Detector (MLDD)

 In order to overcome the drawback of MLD
method, majority logic decoder/detector was
proposed, in which the majority logic decoder
itself act as a fault detector. In general, the
decoding algorithm is still the same as the
majority logic decoder. The difference is that
instead of decoding all codeword bits, the MLDD

Gurmeet
Typewritten Text
94

 Volume 5, Issue 4 SEP 2016

IJRAET

method stops intermediately in the third cycle,
which can able to detect up to five bit flips in
three decoding cycles. So the number of
decoding cycles can be reduced to get
improved performance. The schematic of
majority logic decoder/detector is illustrated in
figure3.

Fig 3: Schematic of Majority Logic
Decoder/Detector (MLDD)

 Initially the code word is stored into the
cyclic shift register and it shifted through all the
taps. The intermediate values in each tap are given
to the XOR matrix to perform the checksum
equations. The resulting sums are then forwarded
to the majority gate for evaluating its correctness.
If the number of 1‟s received is greater than the
number of 0‟s which would mean that the
current bit under decoding is wrong, so it mo
ve on the decoding process. Otherwise, the bit
under decoding would be correct and no extra
operations would be needed on it. Decoding
process involving the operation of the content of
the registers is rotated and the above procedure is
repeated and it stops intermediately in the third
cycle. If in the first three cycles of the decoding
process, the evaluation of the XOR matrix for all
is “0,” the code word is determined to be error -
free and forwarded directly to the output. If the
error contains in any of the three cycles at least a
“1,” it would continue the whole decoding process
in order to eliminate the errors. Finally, the parity
check sums should be zero if the code word has
been correctly decoded. In conclusion the
MLDD method is used to detect the five bit
errors and correct four bit errors effectively. If

the code word contain more than five bit error, it
produces the output but it did not show the errors
presented in the input. This type of error is called
the silent data error. Drawback of this method is
did not detecting the silent data error and it
consuming the area of the majority gate. The
schematic for this memory system is shown in
figure 5. It is very similar to the one shown in fig.
1; additionally the control unit was added in the
MLDD module to manage the decoding process
(to detect the error).

Fig 4: Schematic of memory system with MLDD

Overall operation of the MLDD is
illustrated in figure 5

Gurmeet
Typewritten Text
95

 Volume 5, Issue 4 SEP 2016

IJRAET

Fig 5: MLDD Algorithm

III. Proposed Polar Encoder

In this section, we propose a partially
parallel structure to encode long polar codes
efficiently. To clearly show the proposed
approach and how to transform the architecture, a
4-parallel encoding architecture for the 16-bit
polar code is exemplified in depth. The fully
parallel encoding architecture is first transformed
to a folded form, and then the lifetime analysis
and register allocation are applied to the folded
architecture. Lastly, the proposed parallel
architecture for long polar codes is described.
A. Folding Transformation

The folding transformation is widely used
to save hardware resources by time-multiplexing
several operations on a functional unit. A data
flow graph (DFG) corresponding to the fully
parallel encoding process for 16-bit polar codes is
shown in Fig.6, where a node represents the
kernel matrix operation F, and wij denotes thejth
edge at the ith stage.

Fig. 6. DFG of 16-bit polar encoding

Note that the DFG of the fully parallel
polar encoder is similar to that of the
fast Fourier transform except that the polar
encoder employs the kernel matrix instead of the
butterfly operation. Given the 16-bit DFG, the 4-
parallel folded architecture that processes 4 bits at
a time can be realized with placing two functional
units in each stage since the functional unit
computes 2 bits at a time. In the folding
transformation, determining a folding set, which
represents the order of operations to be executed
in a functional unit, is the most important design
factor. To construct efficient folding sets, all
operations in the fully parallel encoding are first
classified as separate folding sets. Since the input
is in a natural order, it is reasonable to
alternatively distribute the operations in the
consecutive order. Thus, each stage consists of
two folding sets, each of which contains only odd
or even operations to be performed by a separate
unit. Considering the four-parallel input sequence
in a natural order, stage 1 has two folding sets
of{A0,A2,A4,A6}and {A1,A3,A5,A7}. Each
folding set contains four elements, and the
position of an element represents the operational
order in the corresponding functional unit. Two
functional units for stage 1 execute A0 and A1
simultaneously at the beginning and A2and A3at
the next cycle, and so forth. The folding sets of
stage 2 have the same order as those of stage 1,
i.e.,{B0,B2,B4,B6} and{B1,B3,B5,B7}, since the
four-parallel input sequence of stage 2 is equal to
that of stage 1. Furthermore, to determine the
folding sets of another stages, the property that the

Gurmeet
Typewritten Text
96

 Volume 5, Issue 4 SEP 2016

IJRAET

functional unit processes a pair of inputs whose
indices differ by2s−1 is exploited. In the case of
stage 3, two data whose indices differ by 4 are
processed together, which implies that the
operational distance of the corresponding data is
two as the kernel functional unit computes two
data at a time. For instance, w2,0andw2,4that
come fromB0andB2are used as the inputs to C0.
Since both inputs should be valid to be processed
in a functional unit, the operations in stage 3 are
aligned to the late input data. Cyclic shifting the
folding sets right by one, which can be realized by
inserting a delay of one time unit, is to enable full
utilization of the functional units by overlapping
adjacent iterations. As a result, the folding sets of
stage 3 are determined to {C6,C0,C2,C4} and
{C7,C1,C3,C5}, whereC6in the current iteration
is overlapped with A0and B0in the next iteration.
In the same manner, the property that the
functional unit processes a pair of inputs whose
indices differ by 8 is exploited in stage 4. The
folding sets of stage 4 are {D2,D4,D6,D0} and
{D3,D5,D7,D1}, which are obtained by cyclic
shifting the previous folding sets of stage 3 by
two. Generally speaking, a stage whose index s is
less than or equal to log2P, where P is the level of
parallelism, has the same folding sets determined
by evenly interleaving the operations in the
consecutive order, and another stage whose index
sis larger than log2P has the folding sets obtained
by cyclic shifting the previous folding sets of
stages−1right by s−log2P.

Fig. 7. Proposed 4-parallel folded architecture for
encoding the polar (16,K) codes

IV. Orthogonal Latin Squares codes

 The concept of Latin squares and their
applications are well known [12]. A Latin square
of size m is an m * m matrix that has
permutations of the digits 0,1,..M-1 in both its
rows and columns. For each value of m there can
be more than one Latin square. When that is the
case, two Latin squares are said to be orthogonal
if when they are superimposed every ordered
pair of elements appears only once. Orthogonal
Latin Squares (OLS) codes are derived from
Orthogonal Latin squares [9]. These codes have
k=m2 data bits and 2tm check bits where t is the
number of errors that the code can correct. For a
Double Error Correction (DEC) code t=2 and
therefore 4m check bits are used. One advantage
of OLS codes is that their construction is modular.
This means that to obtain a code that can correct
t+1 errors, simply 2m check bits are added to the
code that can correct t errors. The modular
property enables the selection of the error
correction capability for a given word size. As
mentioned in the introduction, OLS codes can
be decoded using One Step Majority Logic
Decoding (OS-MLD) as each data bit
participates in exactly 2t check bits and each
other bit participates in at most one of those
check bits. This enables a simple correction when
the number of bits in error is t or less. The 2t
check bits are recomputed and a majority vote is
taken, if a value of one is obtained, the bit is in
error and must be corrected. Otherwise the bit
is correct. As long as the number of errors is t
or less this ensures the error correction as the
remaining t-1 errors can, in the worst case affect
t-1 check bits so that still a majority of t+1
triggers the correction of an erroneous bit. For an

Gurmeet
Typewritten Text
97

 Volume 5, Issue 4 SEP 2016

IJRAET

OLS code that can correct t errors using OS-
MLD, t+1 errors can cause miss-corrections. This
occurs for example if the errors affect t+1 parity
bits in which bit di participates as this bit will be
miss-corrected. The same occurs when the
number of errors is larger than t+1. Each of the 2t
check bits in which a data bit participates is taken
from a group of m parity bits. Those groups are
bits 1 to m, m+1 to 2m, 2m+1 to 3m and 3m+1 to
4m.

Fig 2: Parity check matrix for OLS code having
k and t as 16&1
 The „H‟ matrix for OLS codes is build
from their properties. The matrix is capable of
correcting single type error. By the fact that in
direction of the modular structure it might be
able to correct many errors. They have check
bits of number “2tm” in which, „t‟ stands for
numeral of errors such that code corrects. If we
wanted to correct a double bit then we have „2‟ as
the value of t and thereby the check bits required
are 4m.the H matrix , of Single Error Code „OLS‟
code is construct as :

a. In the above, I2m is the identity matrix of size 2
m.
b. M1, M2 are the matrices of given size m × m2.
„‟The matrix M1 have m ones in respective rows.
For the rth row, the 1‟s are at the position (r − 1)
× m + 1,(r − 1)× m + 2,………….(r − 1) × m+ m
− 1, (r − 1) × m + m”. The matrix M2 is structured
as:M2 = [Im Im . . . Im] (2)

For the given value 4 for m, the matrices

M1 and M2 can be evidently experiential in Fig.

H Matrix in the check bits we remove is evidently
the G Matrix

On concluding the above mentioned, it is

evident that the encoder is intriguing m2 data bits
and computing 2tm parity check bits by using G
matrix . These resulted from the Latin Squares
have the below properties:
a. Exactly in 2t parity checks each info bit is
involved.
b. Utmost one in parity check bits info bits takes
participation.

We use the above properties in the later
section to examine our proposed technique. The
proposed method is based on the observation that
by construction, the groups formed by the mparity
bits in each Mi matrix have at most a one in every
column of H.For the example in Fig. 2, those
groups correspond to bits (or rows) 1–4 (M1), 5–8
(M2), 9–12 (M3), and 13–16 (M4). Therefore, any
combination of four bits from one of those groups
will at most sharea one with the existing columns
inH. For example, the combination formed by bits
1, 2, 3, and 4 shares only bit 1 with columns 1, 2,
3,and 4. This is the condition needed to enable
OS-MLD. Therefore, combinations of four bits
taken all from one of those groups can be used to
add data bit columns to the Hmatrix. For the code
with k=16 andt =2 shown in Fig. 2, we have m=4.
Hence, one combination can be formed in each
group by setting all the positions in the group to
one. This is shown in Fig. 3, where the columns
added are highlighted. In this case, the data bit
block is extended fromk=16 to k=20 bits.

Gurmeet
Typewritten Text
98

 Volume 5, Issue 4 SEP 2016

IJRAET

Fig. 3. Parity check matrix H for the extended
OLS code with k=20 and t =2

 The proposed method first divides the
parity check bits in groups of m bits given by the
Mi matrices. Then, the second step is for each
group to find the combinations of 2t bits such that
any pair of them share at most one bit. This
second step can be seen as that of constructing an
OS-MLD code with m parity check bits.
Obviously, to keep the OS-MLD property for the
extended code, the combinations formed for each
group have to share at most one bit with the
combinations formed in the other 2t −1 groups.
This is not an issue as by construction, different
groups do not share any bit. When m is small
finding, such combinations is easy. For example,
in the case considered in Fig. 3, there is only one
possible combination per group. When m is
larger, several combinations can be formed in
each group. This occurs, for example, when m=8.
In this case, the OLS code has a data block size k
=64. With eight positions in each group, now two
combinations of four of them that share at most
one position can be formed. This means that the
extended code will have eight (4×2) additional
data bits. As the size of the OLS code becomes
larger, the number of combinations in a group also
grows. For the case m=16 and k =256, each group

has 16 elements. Interestingly enough, there are
20 combinations of four elements that share at
most one element. In fact, those combinations are
obtained using the extended OLS code shown in
Fig. 3 in each of the groups. Therefore, in this
case, 4×20=80 data bits can be added in the
extended code. The parameters of the extended
codes are shown in Table I, where n−k =2tm is the
number of parity bits. The data block size for the
original OLS codes (kOLS) is also shown for
reference The method can be applied to the
general case of an OLS code with k =m2 that can
correct t errors. Such a code has 2tm parity bits
that as before are divided in groups ofmbits. The
code can be extended by selecting combinations
of 2t parity bits taken from each of the groups.
These combinations can be added to the code as
long as any pair of the new combinations share at
most one bit. When m is small, a set of such
combinations with maximum size can be easily
found. However, as m grows, finding such a set is
far from trivial (as mentioned before, solving that
problem is equivalent to designing an OS-MLD
code with m parity bits that can correct t errors).
An upper bound on the number of possible
combinations can be derived by observing that
any pair of bits can appear only in one
combination. Because each combination has 2t
bits, there are (2t 2) pairs in each combination.
The number of possible pairs in each group of m
bits is m 2. Therefore, the number of
combinations NG in a group of m bits has to be
such that

One particular case for which a simple
solution can be found is when m=2t ×l. In this
case, an OLS code with a smaller data block size
(l2) can be used in each group. One example for t
=2 is when m=16 (k=256) for which the OLS
code with block size k=42 can be used in each

Gurmeet
Typewritten Text
99

 Volume 5, Issue 4 SEP 2016

IJRAET

group as explained before. Similarly, for t =2,
whenk=1024 (m=32) the OLS code of size k =82
can be used in each group.

V. CONCLUSION
This brief has presented a new partially

parallel encoder architecture developed for long
polar codes. Many optimization techniques have
been applied to derive the proposed architecture.
Experimental results show that the proposed
architecture can save the hardware by up to 73%
compared with that of the fully parallel
architecture. Finally, the relationship between the
hardware complexity and the throughputs is
analyzed to select the most suitable architecture
for a given application. Therefore, the proposed
architecture provides a practical solution for
encoding a long polar code.

The proposed error checking scheme
required a significant delay; however, its impact
on access time could be minimized. This was
achieved by performing the checking in parallel
with the writing of the data in the case of the
encoder and in parallel with the majority voting
and error correction in the case of the decoder.In
a general case, the proposed scheme required
a much larger overhead as most ECCs did not
have the properties of OLS codes. This limited
the applicability of the proposed CED scheme to
OLS codes. The availability of low overhead
error detection techniques for the encoder and
syndrome computation is an additional reason to
consider the use of OLS codes in high-speed
memories and caches.

REFERENCES
[1] E. Arikan, “Channel polarization: A method
for constructing capacity achieving codes for
symmetric binary-input memoryless
channels,”IEEE Trans. Inf. Theory, vol. 55, no. 7,
pp. 3051–3073, Jul. 2009.
[2] R. Mori and T. Tanaka, “Performance of polar
codes with the construction using density
evolution,”IEEE Commun. Lett., vol. 13, no. 7,
pp. 519– 521, Jul. 2009.
[3] S. B. Korada, E. Sasoglu, and R. Urbanke,
“Polar codes: Characterization of exponent,
bounds, constructions,”IEEE Trans. Inf. Theory,
vol. 56, no. 12, pp. 6253–6264, Dec. 2010.

[4] I. Tal and A. Vardy, “List decoding of polar
codes,” inProc. IEEE ISIT, 2011, pp. 1–5.
[5] K. Chen, K. Niu, and J. Lin, “Improved
successive cancellation decoding of polar
codes,”IEEE Trans. Commun., vol. 61, no. 8, pp.
3100–3107, Aug. 2013.
[6] G. Sarkis and W. J. Gross, “Polar codes for
data storage applications,” in Proc. ICNC, 2013,
pp. 840–844.
[7] G. Sarkis, P. Giard, A. Vardy, C. Thibeault,
and W. J. Gross, “Fast polar decoders: Algorithm
and implementation,”IEEE J. Sel. Areas
Commun., vol. 32, no. 5, pp. 946–957, May 2014.
[8] G. Berhault, C. Leroux, C. Jego, and D. Dallet,
“Partial sums generation architecture for
successive cancellation decoding of polar codes,”
inProc. IEEE Workshop SiPS, Oct. 2013, pp.
407–412.
[9] B. Yuan and K. K. Parhi, “Low-latency
successive-cancellation polar decoder
architectures using 2-bit decoding,”IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 61, no. 4, pp.
1241–1254, Apr. 2014.
[10] C. Leroux, A. J. Raymond, G. Sarkis, and W.
J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,”
IEEE Trans. Signal
Process., vol. 61, no. 2, pp. 289–299, Jan. 2013.
[11] A. J. Raymond and W. J. Gross, “Scalable
successive-cancellation hardware decoder for
polar codes,” inProc. IEEE GlobalSIP, Dec. 2013,
pp. 1282–1285.
[12] U. U. Fayyaz and J. R. Barry, “Low-
complexity soft-output decoding of polar
codes,”IEEE J. Sel. Areas Commun., vol. 32, no.
5, pp. 958–966, May 2014.

Gurmeet
Typewritten Text
100

