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Abstract— The capacity-achieving property of 
polar codes has garnered much recent research 
attention resulting in low complexity and high-
throughput hardware and software decoders. It 
would be desirable to implement flexible 
hardware for polar encoders and decoders that can 
implement polar codes of different lengths and 
rates; however this topic has not been studied in 
depth yet. Flexibility is of significant importance 
as it enables the communications system to adapt 
to varying channel conditions and is mandated in 
most communication standards. In this work, we 
describe a low-complexity and flexible systematic 
encoding algorithm, proves its correctness, and 
uses it as basis for encoder implementations 
capable of encoding any polar code up to a 
maximum length. We also investigate hardware 
and software implementations of decoders, 
describing how to implement flexible decoders 
that can decode any polar code up to a given 
length with little overhead and minor impact on 
decoding latency compared to code-specific 
versions. We then demonstrate the application of 
the proposed decoder in a quantum key 
distribution setting, in conjunction with a new 
sum-product approximation to improve 
performance.  

Key Words—polar codes, systematic encoding, 
multi-code encoders, multi-code decoders. 

 

 

I. Introduction 

Modern communication systems must 
cope with varying channel conditions and 
differing throughput constraints. The 802.11-2012 
wireless communication standards specify twelve 
low-density parity-check (LDPC) codes of 
different rate and length combinations; in addition 
to convolutional codes. The overhead of building 
a flexible LDPC decoder capable of decoding 
different codes is significant, and creating flexible 
LDPC decoders is an active area of research. 
There has been much recent interest in Polar 
codes, which achieve the symmetric capacity of 
memory less channels with an explicit 
construction and are decoded with the low 
complexity successive-cancellation decoding 
algorithm. It was also recently shown that polar 
codes do not exhibit any error floor when 
transmitted over symmetric binary-input memory 
less channels. There have been several 
implementations of polar decoders in the 
literature, some of which are capable of decoding 
polar codes of different rates given a fixed code 
length. 

 In this work, we show how this flexibility 
can be extended to decode and also encode any 
code of length n ≤ nmax . Polar codes were 
initially introduced as non-systematic block codes. 
Later, systematic polar encoding was described in  
as a method to ease information extraction and 
improve bit-error rate without affecting the frame-
error rate. 
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The serial nature of this encoding (O(n · 
log n) time-complexity) places a speed limit on 
the encoding process which gets worse with 
increasing code length. In contrast, the non-
systematic encoder presented  is parallel by 
nature, and is amenable to very fast hardware 
implementations. To address this, a new 
systematic encoding algorithm that is easy to 
parallelize was first described. This new encoding 
algorithm offers the best of both worlds: on one 
hand, it is systematic, and thus gains all the 
advantages described above. On the other hand, it 
is essentially equivalent to running the non-
systematic encoder twice. Thus, the prior art (and 
future advances) used to implement fast non-
systematic encoders can be used as is to 
implement a fast systematic encoder. We further 
highlight that the systematic encoder in [6] is very 
flexible: it can encode any polar code of a given 
length by simply updating bit masks stored in 
memory, without any other modifications to the 
implementation.  

The general idea for achieving error 
detection and correction is to add some 
redundancy  which  means to add some extra  data  
to  a  message,  which  receiver  can  use  to  
check  uniformity  of  the  delivered  message,  
and  to  pick  up  data determined to be corrupt. 
Error-detection and correction scheme may be 
systematic or it may be non-systematic. In the 
system of the module non-systematic code, an 
encoded is achieved by transformation of the 
message which  has  least possibility  of  number  
of  bits  present  in  the  message  which  is  being  
converted.  Another  classification  is  the  type  of  
systematic module unique data is sent by the 
transmitter which is attached by a fixed number of 
parity data like check bits  that  obtained  from  
the  data  bits.  The  receiver  applies  the  same  
algorithm  when  only  detection  of  the  error  is 
required to the received data bits which is then 
compared with its output with the receive check 
bits if the values does not match, there we 
conclude that an error has crept at some point in 
the process of transmission. Error correcting 

codes are regularly used in lower-layer 
communication, as well as for reliable storage in 
media such as CDs, DVDs, hard disks and RAM. 

 
Fig.1. Illustration of OS-MLD decoding for OLS 
codes 

 
Provision  against  soft  errors  that  

apparent  they  as  the  bit-flips  in  memory  is  
the  main  motto  of  error  detection  and  
correction. Several techniques are used present to 
midi gate upsets in memories. For example, the 
Bose – Chaudhuri– Hocquenghem codes, Reed–
Solomon codes, punctured difference set codes, 
and matrix codes has been used to contact with 
MCUs in memories. But the above codes 
mentioned requires more area, power, and delay 
overheads since the  encoding and decoding 
circuits are more complex in these complicated 
codes. Reed-Muller code is another protection  
code  that  is  able  to  detect  and  correct  
additional  error  besides  a  Hamming  code.  But 
the major drawback of this protection code is the 
more area it requires and the power penalties. 

Reliability is a major issue for advanced 
electronic circuits.  As technology scales, circuits 
become more  vulnerable  to  error  sources  such  
as  noise  and  radiation  and  also  to  
manufacturing  defects  and process variations. A 
number of error mitigation techniques can be used 
to ensure that errors do not compromise the circuit 
functionality. Among those, Error Correction 
Codes (ECCs) are commonly used to protect 
memories or registers. Traditionally, Single Error 
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Correction (SEC) codes that can correct one bit 
error in a word are used as they are simple to 
implement and require few additional bits. A SEC 
code requires a minimum Hamming distance 
between code-words of three. This means that if a 
double  error  occurs,  the  erroneous  word  can  
be  at  distance  of  one  from  another  valid  
word.  In that case, the decoder will miss-correct 
the word creating an undetected error. To avoid 
this issue, Single Error Correction Double Error 
Detection (SEC-DED) codes can be used.  Those 
codes have a minimum Hamming distance of four. 
Therefore, a double error can in the worst case 
cause the word to be at a distance of two of any 
other valid word so that miss-correction is not 
possible. More generally, for a code that can 
correct t errors, it is of interest to also detect t+1 
errors. This reduces the probability of undetected 
errors that can cause Silent Data Corruption 
(SDC). SDC is especially dangerous as the system 
continues its operation unaware of the error and 
this can lead to further data corruption or to an 
erroneous behavior long after the original error 
occurred. 

 
II. Literature Survey 

 
       This section deals  with the existing decoding  
methodologies used for error detection.  In  error 
detection and correction,  majority logic decoding  
is a  method to decode  repetition codes, based on 
the assumption that the largest number of 
occurrences of a symbol was the transmitted 
symbol.  Majority logic decoder is based on a 
number of parity check equations which are 
orthogonal to each other. So the majority result of 
these parity check equations decide the 
correctness of the current bit under decoding. 
 
A.  One Step Majority Logic Decoder 
 
      As described in earlier, Majority-logic decoder 
is a simple and effective decoder   capable of 
correcting multiple bit  flips  depending  on  the  
number  of  parity  checksum  equations.  It  
consists  of  four  parts:  1)  a  cyclic  shift 
register; 2) an XOR matrix; 3) a majority gate; 4) 
an EXOR gate for error correction, as illustrated 
in figure 2. 

 

 
  
 Fig 2: One step Majority Logic Decoder for (15, 
7) EG-LDPC Codes 
 
       In one step majority logic decoding, initially 
the  code word is  loaded into the cyclic shift 
register.  Then the check  equations  are  
computed.  The  resulting  sums  are  then  
forwarded  to  the  majority  gate  for  evaluating  
its correctness.  If the number of 1‟s received in is 
greater than the number of 0‟s which  means  that  
the current bit under  decoding  is  wrong,  and  a  
signal  to  correct  it  would  be  triggered.  
Otherwise the bit under decoding  is correct and 
no extra operations would be needed on it. In 
next, the content of the registers are rotated and 
the above procedure is repeated until codeword 
bits have been processed. Finally, the parity check 
sums should be zero if the codeword has been 
correctly decoded.  In this  process, each bit  may 
be corrected only once.  As a result, the decoding 
circuitry is simple, but it requires a long decoding 
time if the code word is  large.  Thus, by one-step 
majority-logic decoding, the code is capable of 
correcting any error pattern with two or fewer 
errors . For example, for a code word of 15-bits, 
the decoding would take 15 cycles, which would 
be excessive for most applications 
B. Majority Logic Decoder/Detector (MLDD) 
 
       In order to overcome the drawback of MLD 
method, majority logic decoder/detector was 
proposed, in which the majority logic decoder 
itself act as a fault detector.  In general, the 
decoding algorithm is still  the  same as the 
majority logic decoder. The difference is that 
instead of decoding all codeword bits, the MLDD 
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method stops intermediately in the third cycle, 
which  can able to detect up to five bit  flips in 
three decoding cycles.  So the number  of  
decoding  cycles  can  be  reduced  to  get  
improved  performance.  The  schematic  of  
majority  logic  decoder/detector is illustrated in 
figure3. 

 
 
 

Fig 3: Schematic of Majority Logic 
Decoder/Detector (MLDD) 

 
         Initially the code word  is stored into the 
cyclic shift register and it shifted through all the 
taps. The intermediate values in each tap are given 
to the XOR matrix  to perform the checksum 
equations. The resulting sums are then forwarded 
to the majority gate for evaluating its correctness. 
If the number of 1‟s received is greater than the 
number  of  0‟s  which  would  mean  that  the  
current  bit  under  decoding  is  wrong,  so  it  mo 
ve  on  the  decoding process.  Otherwise, the bit  
under decoding  would be correct and  no extra 
operations  would be needed on it. Decoding 
process involving the operation of the content of 
the registers is rotated and the above procedure is 
repeated and it stops intermediately in the third 
cycle. If in the first three cycles of the decoding 
process, the evaluation of the XOR matrix for all 
is “0,” the code word is determined to be error -
free and forwarded directly to the output. If the 
error contains in any of the three cycles at least a 
“1,” it would continue the whole decoding process 
in order to eliminate the errors. Finally, the parity 
check sums should be zero if the code word has 
been correctly  decoded.  In  conclusion  the  
MLDD  method  is  used  to  detect  the  five  bit  
errors  and  correct  four  bit errors effectively. If 

the code word contain more than five bit error, it 
produces the output but it did not show the errors 
presented in the input. This type of error is called 
the silent data error. Drawback of this method is 
did not detecting the silent data error and it 
consuming the area of the majority gate.   The 
schematic for this memory system is shown in 
figure 5. It is very similar to the one shown in fig. 
1; additionally the control unit was added in the 
MLDD module to manage the decoding process 
(to detect the error). 

 
 
Fig 4: Schematic of memory system with MLDD 
        

Overall operation of the MLDD is 
illustrated in figure 5 
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Fig 5: MLDD Algorithm 

III. Proposed Polar Encoder 
 

In this section, we propose a partially 
parallel structure to encode long polar codes 
efficiently. To clearly show the proposed 
approach and how to transform the architecture, a 
4-parallel encoding architecture for the 16-bit 
polar code is exemplified in depth. The fully 
parallel encoding architecture is first transformed 
to a folded form, and then the lifetime analysis 
and register allocation are applied to the folded 
architecture. Lastly, the proposed parallel 
architecture for long polar codes is described. 
A. Folding Transformation 

The folding transformation is widely used 
to save hardware resources by time-multiplexing 
several operations on a functional unit. A data 
flow graph (DFG) corresponding to the fully 
parallel encoding process for 16-bit polar codes is 
shown in Fig.6, where a node represents the 
kernel matrix operation F, and wij denotes thejth 
edge at the ith stage.  

 
 

Fig. 6. DFG of 16-bit polar encoding 

Note that the DFG of the fully parallel 
polar encoder is similar to that of the 
fast Fourier transform except that the polar 
encoder employs the kernel matrix instead of the 
butterfly operation. Given the 16-bit DFG, the 4-
parallel folded architecture that processes 4 bits at 
a time can be realized with placing two functional 
units in each stage since the functional unit 
computes 2 bits at a time. In the folding 
transformation, determining a folding set, which 
represents the order of operations to be executed 
in a functional unit, is the most important design 
factor. To construct efficient folding sets, all 
operations in the fully parallel encoding are first 
classified as separate folding sets. Since the input 
is in a natural order, it is reasonable to 
alternatively distribute the operations in the 
consecutive order. Thus, each stage consists of 
two folding sets, each of which contains only odd 
or even operations to be performed by a separate 
unit. Considering the four-parallel input sequence 
in a natural order, stage 1 has two folding sets 
of{A0,A2,A4,A6}and {A1,A3,A5,A7}. Each 
folding set contains four elements, and the 
position of an element represents the operational 
order in the corresponding functional unit. Two 
functional units for stage 1 execute A0 and A1 
simultaneously at the beginning and A2and A3at 
the next cycle, and so forth. The folding sets of 
stage 2 have the same order as those of stage 1, 
i.e.,{B0,B2,B4,B6} and{B1,B3,B5,B7}, since the 
four-parallel input sequence of stage 2 is equal to 
that of stage 1. Furthermore, to determine the 
folding sets of another stages, the property that the 

Gurmeet
Typewritten Text
96



                                                                                 Volume 5, Issue 4 SEP 2016      
 

IJRAET  
 

functional unit processes a pair of inputs whose 
indices differ by2s−1 is exploited. In the case of 
stage 3, two data whose indices differ by 4 are 
processed together, which implies that the 
operational distance of the corresponding data is 
two as the kernel functional unit computes two 
data at a time. For instance, w2,0andw2,4that 
come fromB0andB2are used as the inputs to C0. 
Since both inputs should be valid to be processed 
in a functional unit, the operations in stage 3 are 
aligned to the late input data. Cyclic shifting the 
folding sets right by one, which can be realized by 
inserting a delay of one time unit, is to enable full 
utilization of the functional units by overlapping 
adjacent iterations. As a result, the folding sets of 
stage 3 are determined to {C6,C0,C2,C4} and 
{C7,C1,C3,C5}, whereC6in the current iteration 
is overlapped with A0and B0in the next iteration. 
In the same manner, the property that the 
functional unit processes a pair of inputs whose 
indices differ by 8 is exploited in stage 4. The 
folding sets of stage 4 are {D2,D4,D6,D0} and 
{D3,D5,D7,D1}, which are obtained by cyclic 
shifting the previous folding sets of stage 3 by 
two. Generally speaking, a stage whose index s is 
less than or equal to log2P, where P is the level of 
parallelism, has the same folding sets determined 
by evenly interleaving the operations in the 
consecutive order, and another stage whose index 
sis larger than log2P has the folding sets obtained 
by cyclic shifting the previous folding sets of 
stages−1right by s−log2P. 

 

 
Fig. 7. Proposed 4-parallel folded architecture for 
encoding the polar (16,K) codes 
 

IV. Orthogonal Latin Squares codes 
 
 The concept of Latin squares and their 
applications are well known [12]. A Latin square 
of size  m is an  m  *  m  matrix that has 
permutations of the digits  0,1,..M-1 in both its 
rows and columns. For each value of m  there can 
be more than one Latin square. When that is the 
case, two Latin squares are said to  be  orthogonal  
if  when  they  are  superimposed  every  ordered  
pair  of  elements  appears  only  once. Orthogonal 
Latin Squares (OLS) codes are derived from 
Orthogonal Latin squares [9]. These codes have 
k=m2 data bits and 2tm check bits where t is the 
number of errors that the code can correct. For a 
Double Error Correction (DEC) code t=2 and 
therefore 4m check bits are used. One advantage 
of OLS codes is that their construction is modular. 
This means that to obtain a code that can correct 
t+1 errors, simply 2m check bits are added to the 
code that can correct t errors. The modular 
property enables the selection of the error 
correction capability for a given word size. As  
mentioned  in  the  introduction,  OLS  codes  can  
be  decoded  using  One  Step  Majority  Logic 
Decoding  (OS-MLD)  as  each  data  bit  
participates  in  exactly  2t  check  bits  and  each  
other  bit  participates in at most one of those 
check bits. This enables a simple correction when 
the number of bits in error is t or less. The 2t 
check bits are recomputed and a majority vote is 
taken, if a value of one is  obtained,  the  bit  is  in  
error  and  must  be  corrected.  Otherwise the bit 
is correct.    As  long  as  the number of errors is  t  
or less  this ensures the error correction as the 
remaining  t-1  errors can, in the worst case affect 
t-1 check bits so that still a majority of t+1 
triggers the correction of an erroneous bit. For an 
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OLS code that can correct t errors using OS-
MLD, t+1 errors can cause miss-corrections. This 
occurs for example if the errors affect t+1 parity 
bits in which bit di participates as this bit will be 
miss-corrected. The same occurs when the 
number of errors is larger than t+1. Each of the 2t 
check bits in which a data bit participates is taken 
from a group of m parity bits. Those groups are 
bits 1 to m, m+1 to 2m, 2m+1 to 3m and 3m+1 to 
4m. 

 

 
 
Fig 2: Parity check matrix for OLS code   having 
k and t as 16&1 
 The „H‟ matrix for OLS codes is build 
from their properties. The matrix is capable of 
correcting single type error. By the  fact  that  in  
direction  of  the  modular  structure  it  might  be  
able  to  correct  many  errors.  They have check 
bits of number “2tm” in which, „t‟ stands for 
numeral of errors such that code corrects. If we 
wanted to correct a double bit then we have „2‟ as 
the value of t and thereby the check bits required 
are 4m.the H matrix , of Single Error Code „OLS‟ 
code is construct as : 

 
 
a. In the above, I2m is the identity matrix of size 2 
m. 
b. M1, M2 are the matrices of given size m × m2.  
„‟The matrix M1 have m ones in respective rows. 
For the rth row, the 1‟s are at the position (r − 1) 
× m + 1,(r − 1)× m + 2,………….(r − 1) × m+ m 
− 1, (r − 1) × m + m”. The matrix M2 is structured 
as:M2 = [Im Im . . . Im]  (2) 

 
For the given value 4 for m, the matrices 

M1 and M2 can be evidently experiential in Fig. 

H Matrix in the check bits we remove is evidently 
the G Matrix 

 
 
On concluding the above mentioned, it is 

evident that the encoder is intriguing m2 data bits 
and computing 2tm parity check bits by using G 
matrix . These resulted from the Latin Squares 
have the below properties: 
a. Exactly in 2t parity checks each info bit is 
involved. 
b. Utmost one in parity check bits info bits takes 
participation. 

We use the above properties in the later 
section to examine our proposed technique. The 
proposed method is based on the observation that 
by construction, the groups formed by the mparity 
bits in each Mi matrix have at most a one in every 
column of H.For the example in Fig. 2, those 
groups correspond to bits (or rows) 1–4 (M1), 5–8 
(M2), 9–12 (M3), and 13–16 (M4). Therefore, any 
combination of four bits from one of those groups 
will at most sharea one with the existing columns 
inH. For example, the combination formed by bits 
1, 2, 3, and 4 shares only bit 1 with columns 1, 2, 
3,and 4. This is the condition needed to enable 
OS-MLD. Therefore, combinations of four bits 
taken all from one of those groups can be used to 
add data bit columns to the Hmatrix. For the code 
with k=16 andt =2 shown in Fig. 2, we have m=4. 
Hence, one combination can be formed in each 
group by setting all the positions in the group to 
one. This is shown in Fig. 3, where the columns 
added are highlighted. In this case, the data bit 
block is extended fromk=16 to k=20 bits. 
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Fig. 3. Parity check matrix H for the extended 
OLS code with k=20 and t =2 
 
 The proposed method first divides the 
parity check bits in groups of m bits given by the 
Mi matrices. Then, the second step is for each 
group to find the combinations of 2t bits such that 
any pair of them share at most one bit. This 
second step can be seen as that of constructing an 
OS-MLD code with m parity check bits. 
Obviously, to keep the OS-MLD property for the 
extended code, the combinations formed for each 
group have to share at most one bit with the 
combinations formed in the other 2t −1 groups. 
This is not an issue as by construction, different 
groups do not share any bit. When m is small 
finding, such combinations is easy. For example, 
in the case considered in Fig. 3, there is only one 
possible combination per group. When m is 
larger, several combinations can be formed in 
each group. This occurs, for example, when m=8. 
In this case, the OLS code has a data block size k 
=64. With eight positions in each group, now two 
combinations of four of them that share at most 
one position can be formed. This means that the 
extended code will have eight (4×2) additional 
data bits. As the size of the OLS code becomes 
larger, the number of combinations in a group also 
grows. For the case m=16 and k =256, each group 

has 16 elements. Interestingly enough, there are 
20 combinations of four elements that share at 
most one element. In fact, those combinations are 
obtained using the extended OLS code shown in 
Fig. 3 in each of the groups. Therefore, in this 
case, 4×20=80 data bits can be added in the 
extended code. The parameters of the extended 
codes are shown in Table I, where n−k =2tm is the 
number of parity bits. The data block size for the 
original OLS codes (kOLS) is also shown for 
reference The method can be applied to the 
general case of an OLS code with k =m2 that can 
correct t errors. Such a code has 2tm parity bits 
that as before are divided in groups ofmbits. The 
code can be extended by selecting combinations 
of 2t parity bits taken from each of the groups. 
These combinations can be added to the code as 
long as any pair of the new combinations share at 
most one bit. When m is small, a set of such 
combinations with maximum size can be easily 
found. However, as m grows, finding such a set is 
far from trivial (as mentioned before, solving that 
problem is equivalent to designing an OS-MLD 
code with m parity bits that can correct t errors). 
An upper bound on the number of possible 
combinations can be derived by observing that 
any pair of bits can appear only in one 
combination. Because each combination has 2t 
bits, there are (2t 2) pairs in each combination. 
The number of possible pairs in each group of m 
bits is m 2. Therefore, the number of 
combinations NG in a group of m bits has to be 
such that  
 

 
  

One particular case for which a simple 
solution can be found is when m=2t ×l. In this 
case, an OLS code with a smaller data block size 
(l2) can be used in each group. One example for t 
=2 is when m=16 (k=256) for which the OLS 
code with block size k=42 can be used in each 
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group as explained before. Similarly, for t =2, 
whenk=1024 (m=32) the OLS code of size k =82 
can be used in each group. 

V. CONCLUSION 
This brief has presented a new partially 

parallel encoder architecture developed for long 
polar codes. Many optimization techniques have 
been applied to derive the proposed architecture. 
Experimental results show that the proposed 
architecture can save the hardware by up to 73% 
compared with that of the fully parallel 
architecture. Finally, the relationship between the 
hardware complexity and the throughputs is 
analyzed to select the most suitable architecture 
for a given application. Therefore, the proposed 
architecture provides a practical solution for 
encoding a long polar code. 

The  proposed  error  checking  scheme  
required  a significant delay; however, its impact 
on access time could be minimized. This was 
achieved by performing the checking in parallel 
with the writing of the data in the case of the 
encoder and in parallel with the majority voting 
and error correction in the case of the decoder.In  
a  general  case,  the  proposed  scheme  required  
a much  larger  overhead  as  most  ECCs  did  not  
have  the properties of OLS codes. This limited 
the applicability of the proposed CED scheme to 
OLS codes. The availability of low overhead  
error  detection  techniques  for  the  encoder  and 
syndrome computation is an additional reason to 
consider the use of OLS codes in high-speed 
memories and caches. 
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