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Abstract: Now a day’s for extending the keyword search to relational data set has been an area of research within the 
database and Information Retrieval. There is no standardization in the process if information retrieval, which will not clearly 
show the actual result also it displays keyword search without ranking and Execution time is more in existing system. We 
propose a system for; performance evaluation of relational keyword search systems. In the propose system combine schema-
based and graph-based approaches and propose a Relational Keyword Search System to overcome the mentioned 
disadvantages of existing systems and manage the information and user access the information very efficiently. The 
objective of this technique is to manage Information, Database and Information Retrieval systems involved independently 
and developed their own unique systems to allow users to access information. We also explore the relationship between 
execution time and factors. The proposed search technique will overcome the poor performance for datasets exceeding tens 
of thousands of vertices. 
 
Keywords: Keyword Search, Empirical Performance, Relational Data, Relational Keyword. 

 

I. INTRODUCTION  
With the growing use of internet more and more people 

search the data on internet. Advents of Internet, it became 
possible to store a large amount of information. Several 
techniques are used to Information Retrieval (IR). Keyword 
search is one of the techniques use for the same. Keyword 
search is possible on both structure and semi-structure 
databases, also it possible on graph structure which 
combines relational, HTML and XML data. In relational 
databases the keyword search is used to find the tuples in by 
giving queries. Keyword search use number of techniques 
and algorithm for storing and retrieving data, less accuracy, 
does not giving a correct answer, require large time for 
searching and large amount of storage space for data storage. 
We propose a system to overcome the disadvantages which 
discussed for efficient keyword search. Data mining or 
information retrieval is the process to retrieve data from 
dataset and transform it to user in understandable form, so 
user easily gets that information. 
 

One important advantages of keyword search is user does 
not require a proper knowledge of database queries. User 
easily inserts a keyword for searching and gets a result 
related to that keyword. Keyword search on relational 
databases find the answer of the tuples which are connected 
to database keys like primary key and foreign keys. So we 
also present which comparative techniques used for keyword 
search like DISCOVER, BANKS, BLINKS, EASE, and 
SPARK. One important thing is that any existing techniques 

experimental result indicate that existing search techniques 
are not capable of real world information retrieval and data 
mining task. As we discuss later in this paper, many 
relational keyword search systems approximate solutions to 
intractable problems. Researchers consequently rely on 
empirical evaluation to validate their heuristics. We continue 
this tradition by evaluating these systems using a benchmark 
designed for relational keyword search. Our holistic view of 
the retrieval process exposes the real-world tradeoffs made 
in the design of many of these systems. For example, some 
systems use alternative semantics to improve performance 
while others incorporate more sophisticated scoring 
functions to improve search effectiveness. These tradeoffs 
have not been the focus of prior evaluations. The major 
contributions of this paper are as follows:  
 We conduct an independent, empirical performance 

evaluation of 7 relational keyword search techniques, 
which doubles the number of comparisons as previous 
work. 

 Our results do not substantiate previous claims 
regarding the scalability and performance of relational 
keyword search techniques. Existing search techniques 
perform poorly for datasets exceeding tens of thousands 
of vertices. 

 We show that the parameters varied in existing 
evaluations are at best loosely related to performance, 
which is likely due to experiments not using 
representative datasets or query workloads. 

 Our work is the first to combine performance and 
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for information retrieval on real world databases and also  
number of systems. Considering these two issues in 

conjunction provides better understanding of these two 
critical tradeoffs among competing system designs The 
remainder of this paper is organized as follows. In Section 
II, Related Work Section III System Design Section IV 
describes our Project Description and Finally Section V 
provides our conclusions. 
 

II. RELATED WORK  
The results indicate that many existing search 

techniques do not provide acceptable performance for 
realistic retrieval tasks. In particular, memory consumption 
precludes many search techniques from scaling beyond 
small datasets with tens of thousands of vertices. Thus, also 
exploring the relationship between execution time and 
factors varied in previous evaluations; the analysis indicates 
that these factors have relatively little impact on 
performance. In summary, the work confirms previous 
claims regarding the unacceptable performance of these 
systems and underscores the need for standardization as 
exemplified by the IR community when evaluating these 
retrieval systems. 
 
A. Dynamic Programming Algorithm  

Dynamic programming algorithms are used for 
optimization (for example, finding the shortest path between 
two points, or the fastest way to multiply many matrices). A 
dynamic programming algorithm will examine all possible 
ways to solve the problem and will pick the best solution. 
Therefore, it can roughly think of dynamic programming as 
an intelligent, brute-force method that enables us to go 
through all possible solutions to pick the best one. If the 
scope of the problem is such that going through all possible 
solutions is possible and fast enough, dynamic programming 
guarantees finding the optimal solution. The alternatives are 
many, such as using a greedy algorithm, which picks the 
best possible choice "at any possible branch in the road". 
While a greedy algorithm does not guarantee the optimal 
solution, it is faster. Fortunately, some greedy algorithms 
(such as minimum spanning trees) are proven to lead to the 
optimal solution. 
 
B. Pseudo Polynomial-Time Algorithm  

A pseudo-polynomial-time algorithm is used to display the 
exponential behavior only when confronted with instances 
containing exponentially large numbers of clusters, which 
might be rare for the application, are interested in. If so, this 
type of algorithm might serve the purposes almost as well as 
a polynomial time algorithm. This algorithm helps to 
improve the time taken for searching the data from large set 
of cluster based on the respective keyword and produce the 
results quickly within a fraction of seconds with the help of 
Steiner Tree Problem. The Steiner tree problem is 
superficially similar to the minimum spanning tree problem: 

search effectiveness in the evaluation of such a large. 
resource from that clusters and produce the results within a 

minimum of time. 
 
C. Bidirectional Search Algorithm  
Bidirectional search algorithm is a searching algorithm that 
finds a shortest path from an initial highest point to a goal 
highest point in a directed way. It runs two simultaneous 
searches: one forward from the initial state and one backward 
from the goal, stopping when the two meet in the middle. The 
reason for this approach is that in many cases it is faster: for 
instance, in a simplified model of search problem complexity in 
which both searches expand a tree with branching factor b, and 
the distance from start to goal is d, each of the two searches 
has complexity O(bd/2) (in Big O notation), and the sum of 
these two search times is much less than the O(bd) 
complexity that would result from a single search from the 
beginning to the goal. 
 
D. Sparse Algorithm  

The Sparse algorithm discovers the files by its keyword 
those are presented into the content of the file and executes 
it in a fraction of second for the user. 
 
E. Skyline Sweep Algorithm  

The Skyline Sweep Algorithm is used to minimize the 
total number of database probes during a search. Searching 
keywords in databases is complex task than search in files. 
Information Retrieval (IR) process search keywords from 
text files and it is very important that queering keyword to 
the relational databases. Generally to retrieve data from 
relational database Structure Query Language (SQL) can be 
used to find relevant records from the database. There is 
natural demand for relation database to support effective and 
efficient IR Style Keyword queries. This algorithm clearly 
supporting effective and efficient top-k keyword search in 
relational databases also describe the frame word which 
takes keywords and K as inputs and generates top-k relevant 
records. The results of implemented system with Skyline 
Sweeping Algorithm show that it is one effective and 
efficient style of keyword search. 
 
F. Breadth-First Algorithm  

The BFS begins search at a root node and inspects all the 
neighboring nodes. Then for each of those neighbor nodes in 
turn, it inspects their neighbor nodes which were unvisited, 
and so on. In the approach it results the content wise usage 
of data or results the searching count based on the searched 
content.  

III. SYSTEM DESIGN   
A. System Architecture   

In proposed system, empirical performance evaluation 
of relational keyword search systems. Our results indicate 
that many existing search techniques do not provide 
acceptable performance for realistic retrieval tasks. In 
particular, memory consumption precludes many search  
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techniques from scaling beyond small datasets with tens of 
which gives set of clusters and searching the required  

thousands of vertices. We also explore the relationship 
between execution time and factors varied in previous 
evaluations; our analysis indicates that these factors have 
relatively little impact on performance. In summary, our 
work confirms previous claims regarding the unacceptable 
performance of these systems and underscores the need for 
standardization as exemplified by the IR community when 
evaluating these retrieval systems. Our results should serve 
as a challenge to this community because little previous 
work has acknowledged these challenges. Moving forward, 
we must address several issues. First, we must design 
algorithms, data structures, and implementations that 
recognize that main memory is limited. 
 

Search techniques must manage their memory utilization 
efficiently, swapping data to and from disk as necessary. 
Such implementations are unlikely to have performance 
characteristics that are similar to existing approaches but 

 
must be used if relational keyword search systems are to 
scale to large data sets (e.g., hundreds of millions of tuples). 
Second, evaluations should reuse data sets and query 
workloads to provide greater consistency of results, for even 
our results vary widely depending on which data set is 
considered. Fortunately, our evaluation benchmark is 
beginning to gain traction in this area as evidenced by 
others’ adoption of it for their evaluations. Third, the 
practice of researchers implementing search techniques may 
account for some evaluation discrepancies. Making the 
original source code (or a binary distribution that accepts a 
database URL and query as input) available to other 
researchers would greatly reduce the likelihood that 
observed differences are implementation artifacts. 

 

 

 

 
 

of queries that either did not complete execution within 1 

hour or exhausted the total amount of virtual memory. Most 

search techniques complete all the MONDIAL queries with 

mean execution times ranging from less than a second to 

several hundred seconds. Results for IMDb and Wikipedia 

are more troubling. Only DISCOVER and DISCOVER-II 

completes any IMDb queries, and their mean execution time 

is several minutes. DPBF joins these two systems by 

completing all the Wikipedia queries, but all three systems’ 

mean execution times are less than ideal, ranging from 6–30 

seconds.  

 

To summarize these results, existing search techniques 

provide reasonable performance only on the smallest dataset 

(MONDIAL). Performance degrades significantly when we 

consider a dataset with hundreds of thousands of tuples 

(Wikipedia) and becomes unacceptable for millions of tuples 

(IMDb). The memory consumption for these algorithms is 

considerably higher than reported, preventing most search 

techniques from searching IMDb. 
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better. The errors bars provide 95% confidence intervals 
for the mean. Systems are ordered by publication date 
and the retrieval depth was 100 results. 

 
 
 
 
 
 
 
 
 
 
 
 

 
In terms of overall search effectiveness (MAP in Table III), 
the various search techniques vary widely. Not surprisingly, 
effectiveness is highest for our smallest dataset. The best 
systems, DPBF and BLINKS, perform exceedingly well. We 
note that these scores are considerably higher than those that 
appear in IR venues (e.g., the Text RE trivial Conference 
(TREC)), which likely reflects the small size of the 
MONDIAL database. If we accept DISCOVER and 
DISCOVER-II’s trend as representative, we would expect 
search effectiveness to fall when we consider larger datasets. 
Unlike performance, which is generally consistent among 
systems, search effectiveness differs considerably. For 
examples, DISCOVER-II performs poorly (relative to the 
other ranking schemes) for MONDIAL, but DISCOVER-II 
proffers the greatest search effectiveness on IMDb and 
Wikipedia. Ranking schemes that perform well for 
MONDIAL queries are not necessarily good for Wikipedia 
queries. Hence it is important to balance performance 
concerns with a consideration of search effectiveness. Given 
the few systems that complete the queries for IMDb and 
Wikipedia, we focus on results for the MONDIAL dataset in 
the remainder of this section 
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A. Execution Time  

Fig. 2 displays the total execution time for each system 
on a selection of MONDIAL queries, and Fig. 3 shows box 
plots of the execution times for all queries on the 
MONDIAL dataset. Bars are omitted for queries that a 
system failed to complete (due to either timing out or 
exhausting memory). As indicated by the error bars in the 
graph, our execution times are repeatable and consistent. 
Figs 2 and 3 confirm the performance trends in Table III but 
also illustrate the variation in execution time among 
different queries. In particular, the range in execution time 
for a search technique can be several orders of magnitude. 
Most search techniques also have outliers in their execution 
times; these outliers indicate that the performance of these 
search heuristics varies considerably due to characteristics of 
the dataset or queries. 
 
1. Number of search terms  

A number of evaluations, report mean execution time for 
queries that contain different numbers of search terms to 
show that performance remains acceptable even when 
queries contain more keywords. Fig. 4 graphs these values 
for the different systems. Note that some systems fail to 
complete some queries, which accounts for the omissions in 
the graph. As evidenced by the graph, queries that contain 
more search terms require more time to execute on average 
than queries than contain fewer search terms. The relative 
performance among the different systems is unchanged from 
Fig.2. These results are similar to those published in 
previous evaluations. Using Fig.4 as evidence for the 
efficiency of a particular search technique can be 
misleading. In Fig.5, we show box plots of the execution  

times of BANKS and DISCOVER-II to illustrate the range 
in execution times encountered across the various queries. 
As evidenced by these graphs, several queries have 
execution times much higher than the rest. These queries 
give the system the appearance of unpredictable 
performance, especially when the query is similar to another 
one that completes quickly 

 
 

For example, the query ―Uzbek Asiaǁ for BANKS has 
an execution time three times greater than the query ―Hutu 
Africa.ǁ DISCOVER-II has similar outliers; the query 
 
―Panama Omanǁ requires 3.5 seconds to complete even 
though the query ―Libya Australiaǁ completes in less than 
half that time. From a user’s perspective, these queries 
would be expected to have similar execution times. These 
outliers (which are even more pronounced for the other 
datasets) suggest that simply looking at mean execution time 
for different numbers of query keywords does not reveal the 
complete performance profile of these systems. Moreover, 
existing work does not adequately explain the existence of 
these outliers and how to improve the performance of these 
queries 
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number of tuples containing search terms. This result is 

counter-intuitive, as one expects the time to increase when 
more nodes (and all their relationships) must be considered. 
One possible explanation for this phenomenon is that the 
search space in the interior of the data graph (i.e., the 
number of nodes that must be explored when searching) is 
not correlated with the frequency of the keywords in the 
database implies the opposite; we believe additional 
experiments are warranted as part of future work 

 
3. Retrieval depth  

Table IV considers the scalability of the various search 
techniques at different retrieval depths—10 and 100 results. 
Continuing this analysis to higher retrieval depths is not 
particularly useful given the small size of the MONDIAL 
database and given that most systems identify all the 
relevant results within the first 100 results that they return. 
As evidenced by the table, both the absolute and the 
percentage slowdown vary widely. However, neither of 
these values is particularly worrisome: with the exception of 
BANKS-II, the slowdown is relatively small, and BANKS-II 
starts with the highest execution time. 

 

 
The negligible slowdown suggests that—with regard to 

execute time—all the systems will scale easily to larger 
retrieval depths (e.g., 1000 results). More importantly, only 
half the systems provide reasonable performance (a few 
seconds to execute each query) even at a small retrieval 
depth. 
 
B. Response Time  
In addition to overall search time, the response time of a 
keyword search system is of critical importance. Systems that 
support top-k query processing need not enumerate all possible 
results before outputting some to the user. Outputting a small 
number of results (e.g., 10) allows the user to examine the 
initial results and to refine the query if these results are not 
satisfactory. In Table V, we show the mean response time to 
retrieve the first and tenth query result. The table also includes 
P@k, to show the quality of the results retrieved at that retrieval 
depth. Interestingly, the response time for most systems is very 
close to the total execution time, particularly for k = 10. The 
ratio of response time to the total execution time provided in the 
table shows that some scoring functions are not good at quickly 
identifying the best search results. For example, DISCOVER-II 
identifies the highest ranked search result at the same time as it 
identifies the tenth ranked result because its bound on the 
possible score of unseen results falls very rapidly after 
enumerating more than k results. In general, the proximity 
search systems manage to identify results more incrementally 
than the schema-based approaches. Another issue of interest is 
the overhead required to retrieve additional search results. In 
other words, how much additional time is spent maintaining  
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enough state to retrieve 100 results instead of just 10? Table 
VII gives the execution time to retrieve 10 results and the 
response time to retrieve the first 10 results of 100. With the 
exception of BANKS-II, the total overhead is minimal—less 
than a few seconds. In the case of STAR, the percentage 
slowdown is high, but this value is not significant given that the 
execution time is so low 

 
 
 
C. Memory consumption  

Limiting the graph-based approaches to  2 GB of virtual 
memory might unfairly bias our results toward the schema 
based approaches. The schema-based systems offload much of 
their work to the underlying database, which swaps temporary 
data (e.g., the results of a join) to disk as needed. 

 
 Hence, DISCOVER and DISCOVER-II might also require 

a significant amount of memory, and a more fair evaluation 
would allow the graph-based techniques to page data to disk. 
To investigate this possibility, we ran all the systems with   

3 GB of physical memory and 5 GB of virtual memory. 
Note that once a system consumes the available physical 
memory, the operating system’s virtual memory manager is 
responsible for paging data to and from disk.  

 
Table VI contains the results of this experiment.  
 
The overall trends are relatively unchanged from Table 

III although BLINKS does complete all the MONDIAL 
queries with the help of the additional memory. 

 
 The precipitous drop in execution time suggests that 

Java’s garbage collector was responsible for the majority of 
BLINKS’s execution time, and this overhead was 
responsible for BLINKS’s poor performance.  

 
 
The other graph-based systems do not significantly 

improve from the additional virtual memory. In most cases, 
we observed severe thrashing, which merely transformed 
memory exceptions into timeout exceptions 

 
Initial Memory Consumption: To better understand the 
memory utilization of the systems—particularly the 
overhead of an in-memory data graph, we measured each 
system’s memory footprint immediately prior to executing a 
query. The results are shown in Table VIII. The left column 
of values gives the size of the graph representation of the 
database; the right column of values gives the total size of 
all data structures used by the search techniques (e.g., 
additional index structures). As evidenced by the table, the 
schema-based systems consume very little memory, most of 
which is used to store the database schema. In contrast, the 
graph-based search techniques require considerably more 
memory to store their data graph. 
 

 
When compared to the total amount of virtual memory 
available, the size of the MONDIAL data graphs are quite 
small, roughly two orders of magnitude smaller than the size 
of the heap. Hence, the data graph itself cannot account for 
the high memory utilization of the systems; instead, the 
amount of state maintained by the algorithms (not shown by 
the table) must account for the excessive memory 
consumption. For example, BANKS’s worst-case memory 
consumption is O (|V|2) where |V| is the number of vertices 
in the data graph. It is easy to show that in the worst case 
BANKS will require in excess of 1 GB of state during a 
search of the MONDIAL database even if we ignore the  
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overhead of the requisite data structures (e.g., linked lists). 
However, we do note that the amount of space required to 
store a data graph may prevent these systems from searching 
other, larger datasets. For example, BANKS requires  1 
GB of memory for the data graph of the IMDb subset; this 
subset is roughly 40 times smaller than the entire database. 
When coupled with the state it maintains during a search, it 
is easy to see why BANKS exhausts the available heap 
space for many queries on this dataset D. Threats to 
Validity  

Our results naturally depend upon our evaluation 
benchmark. By using publicly available datasets and query 
workloads, we hope to improve the repeatability of these 
experiments. In an ideal world, we would re-implement all 
the techniques that have been proposed to date in the 
literature to ensure the fairest possible comparison. It is our 
experience—from implementing multiple systems from 
scratch—that this task is much more complex than one 
might initially expect. In general, more recent systems tend 
to have more complex query processing algorithms, which 
are more difficult to implement optimally, and few 
researchers seem willing to share their source code (or 
binaries) to enable more extensive evaluations. In the 
following paragraphs, we consider some of the 
implementation differences among the systems and how 
these differences might affect our results  

 
The implementation of DPBF that we obtained was in 

C++ rather than Java. We do not know how much of 
DPBF’s performance advantage (if any) is due to the 
implementation language, but we have no evidence that the 
implementation language plays a significant factor in our 
results. For example, STAR provides roughly the same 
performance as 
DBPF, and DPBF’s performance for Wikipedia queries is 
comparable to DISCOVER and DISCOVER-II when we 
ignore the length of time required to scan the database’s full 
text indexes instead of storing the inverted index entirely 
within main memory (as a hash table). Simply rewriting 
DPBF in Java would not necessarily improve the validity of 
our experiments because other implementation decisions can 
also affect results. For example, a compressed graph 
representation would allow systems to scale better but would 
hurt the performance of systems that touch more nodes and 
edges during a traversal. 

The choice of the graph data structure might significantly 
impact the proximity search systems. All the Java 
implementations use the JGraphT library, which is designed 
to scale to millions of vertices and edges. We found that a 
lower bound for its memory consumption is 32.|V| + 56 .|E| 
bytes where |V| is the number of graph vertices and |E| is the 
number of graph edges. In practice, its memory consumption 
can be significantly higher because it relies on Java’s 
dynamically sized collections for storage the original 
implementation of BANKS-II requires only |V| + 8 .|E| bytes 
for its data graph, making it considerably more efficient than  

the general-purpose graph library used for our evaluation. 
While an array-based implementation is more compact and 
can provide better performance, it does have downsides 
when updating the index. Performance issues that arise when 
updating the data graph have not been the focus of previous 
work and have not been empirically evaluated for these 
systems. While there are other differences between the 
experimental setups for different search techniques (e.g., 
Windows vs. Linux and Intel vs. AMD CPUs), we believe 
that these differences are minor in the scope of the overall 
evaluation. For example, DPBF was executed on a quad-
core CPU, but the implementation is not multi-threaded so 
the additional processor cores are not significant. 

When we executed the Java implementations on the same 
machine that we used for DPBF (which was possible for 
sample queries on our smaller datasets), we did not notice a 
significant difference in execution times. Our results for 
MAP (Table III) differ slightly from previously published 
results. Theoretically our results should be strictly lower for 
this metric because our retrieval depth is smaller, but some 
systems actually improve. The difference is due to the 
exceptions—after an exception (e.g., timeout), we return any 
results identified by the system, even if we are uncertain of 
the results’ final ranking. Hence, the uncertain ranking is 
actually better than the final ranking that the system would 
enforce if allowed to continue to execute. 

 
V. CONCLUSION 

 
Overall we will study all the existing techniques which is 

available in market. Each system has some advantages and 
some issues. We compare all the techniques and checked the 
performance. So finally conclude that any existing system 
cannot fulfill all the requirement of keyword query search. 
They require more space and time; also some techniques are 
limited for particular dataset. The Proposed technique is 
satisfying number of requirement of keyword query search 
using different algorithms. The performance of keyword 
search is also the better to compare other and it shows the 
actual result rather than tentative. It also shows the ranking 
of keyword and not requires the knowledge of database 
queries. Compare to existing algorithm it is a fast process. 
As a future work we can search the techniques which are 
useful for all the datasets, means only single technique can 
be used for MONDIAL, IMDb etc. Further research is 
necessary to investigate the experimental design decisions 
that have a significant impact on the evaluation of relational 
keyword search system. 
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