
 Volume 5, Issue 1 SEP 2015

IJRAET

AN EMPIRICAL PERFORMANCE EVALUATION OF RELATIONAL
KEYWORD SEARCH

1 Shendge Shankar, PG Scholar in C S,

2K.Praveen, Assistant Professor,
3 CH.Poornima, Associate Professor and H O D (C S E),

1 shendgeshanker@gmail.com. 2 kesana.praveen@gmail.com, 3 poornimachaparala@yahoo.com.

1, 2, 3 Aurobindo Institute of Engineering and Technology, Hyderabad, R.R Dist, Telangana –India

Abstract: Now a day’s for extending the keyword search to relational data set has been an area of research within the
database and Information Retrieval. There is no standardization in the process if information retrieval, which will not clearly
show the actual result also it displays keyword search without ranking and Execution time is more in existing system. We
propose a system for; performance evaluation of relational keyword search systems. In the propose system combine schema-
based and graph-based approaches and propose a Relational Keyword Search System to overcome the mentioned
disadvantages of existing systems and manage the information and user access the information very efficiently. The
objective of this technique is to manage Information, Database and Information Retrieval systems involved independently
and developed their own unique systems to allow users to access information. We also explore the relationship between
execution time and factors. The proposed search technique will overcome the poor performance for datasets exceeding tens
of thousands of vertices.

Keywords: Keyword Search, Empirical Performance, Relational Data, Relational Keyword.

I. INTRODUCTION
With the growing use of internet more and more people

search the data on internet. Advents of Internet, it became
possible to store a large amount of information. Several
techniques are used to Information Retrieval (IR). Keyword
search is one of the techniques use for the same. Keyword
search is possible on both structure and semi-structure
databases, also it possible on graph structure which
combines relational, HTML and XML data. In relational
databases the keyword search is used to find the tuples in by
giving queries. Keyword search use number of techniques
and algorithm for storing and retrieving data, less accuracy,
does not giving a correct answer, require large time for
searching and large amount of storage space for data storage.
We propose a system to overcome the disadvantages which
discussed for efficient keyword search. Data mining or
information retrieval is the process to retrieve data from
dataset and transform it to user in understandable form, so
user easily gets that information.

One important advantages of keyword search is user does
not require a proper knowledge of database queries. User
easily inserts a keyword for searching and gets a result
related to that keyword. Keyword search on relational
databases find the answer of the tuples which are connected
to database keys like primary key and foreign keys. So we
also present which comparative techniques used for keyword
search like DISCOVER, BANKS, BLINKS, EASE, and
SPARK. One important thing is that any existing techniques

experimental result indicate that existing search techniques
are not capable of real world information retrieval and data
mining task. As we discuss later in this paper, many
relational keyword search systems approximate solutions to
intractable problems. Researchers consequently rely on
empirical evaluation to validate their heuristics. We continue
this tradition by evaluating these systems using a benchmark
designed for relational keyword search. Our holistic view of
the retrieval process exposes the real-world tradeoffs made
in the design of many of these systems. For example, some
systems use alternative semantics to improve performance
while others incorporate more sophisticated scoring
functions to improve search effectiveness. These tradeoffs
have not been the focus of prior evaluations. The major
contributions of this paper are as follows:
 We conduct an independent, empirical performance

evaluation of 7 relational keyword search techniques,
which doubles the number of comparisons as previous
work.

 Our results do not substantiate previous claims
regarding the scalability and performance of relational
keyword search techniques. Existing search techniques
perform poorly for datasets exceeding tens of thousands
of vertices.

 We show that the parameters varied in existing
evaluations are at best loosely related to performance,
which is likely due to experiments not using
representative datasets or query workloads.

 Our work is the first to combine performance and

Gurmeet
Typewritten Text
195

 Volume 5, Issue 1 SEP 2015

IJRAET

for information retrieval on real world databases and also
number of systems. Considering these two issues in

conjunction provides better understanding of these two
critical tradeoffs among competing system designs The
remainder of this paper is organized as follows. In Section
II, Related Work Section III System Design Section IV
describes our Project Description and Finally Section V
provides our conclusions.

II. RELATED WORK
The results indicate that many existing search

techniques do not provide acceptable performance for
realistic retrieval tasks. In particular, memory consumption
precludes many search techniques from scaling beyond
small datasets with tens of thousands of vertices. Thus, also
exploring the relationship between execution time and
factors varied in previous evaluations; the analysis indicates
that these factors have relatively little impact on
performance. In summary, the work confirms previous
claims regarding the unacceptable performance of these
systems and underscores the need for standardization as
exemplified by the IR community when evaluating these
retrieval systems.

A. Dynamic Programming Algorithm

Dynamic programming algorithms are used for
optimization (for example, finding the shortest path between
two points, or the fastest way to multiply many matrices). A
dynamic programming algorithm will examine all possible
ways to solve the problem and will pick the best solution.
Therefore, it can roughly think of dynamic programming as
an intelligent, brute-force method that enables us to go
through all possible solutions to pick the best one. If the
scope of the problem is such that going through all possible
solutions is possible and fast enough, dynamic programming
guarantees finding the optimal solution. The alternatives are
many, such as using a greedy algorithm, which picks the
best possible choice "at any possible branch in the road".
While a greedy algorithm does not guarantee the optimal
solution, it is faster. Fortunately, some greedy algorithms
(such as minimum spanning trees) are proven to lead to the
optimal solution.

B. Pseudo Polynomial-Time Algorithm

A pseudo-polynomial-time algorithm is used to display the
exponential behavior only when confronted with instances
containing exponentially large numbers of clusters, which
might be rare for the application, are interested in. If so, this
type of algorithm might serve the purposes almost as well as
a polynomial time algorithm. This algorithm helps to
improve the time taken for searching the data from large set
of cluster based on the respective keyword and produce the
results quickly within a fraction of seconds with the help of
Steiner Tree Problem. The Steiner tree problem is
superficially similar to the minimum spanning tree problem:

search effectiveness in the evaluation of such a large.
resource from that clusters and produce the results within a

minimum of time.

C. Bidirectional Search Algorithm
Bidirectional search algorithm is a searching algorithm that
finds a shortest path from an initial highest point to a goal
highest point in a directed way. It runs two simultaneous
searches: one forward from the initial state and one backward
from the goal, stopping when the two meet in the middle. The
reason for this approach is that in many cases it is faster: for
instance, in a simplified model of search problem complexity in
which both searches expand a tree with branching factor b, and
the distance from start to goal is d, each of the two searches
has complexity O(bd/2) (in Big O notation), and the sum of
these two search times is much less than the O(bd)
complexity that would result from a single search from the
beginning to the goal.

D. Sparse Algorithm

The Sparse algorithm discovers the files by its keyword
those are presented into the content of the file and executes
it in a fraction of second for the user.

E. Skyline Sweep Algorithm

The Skyline Sweep Algorithm is used to minimize the
total number of database probes during a search. Searching
keywords in databases is complex task than search in files.
Information Retrieval (IR) process search keywords from
text files and it is very important that queering keyword to
the relational databases. Generally to retrieve data from
relational database Structure Query Language (SQL) can be
used to find relevant records from the database. There is
natural demand for relation database to support effective and
efficient IR Style Keyword queries. This algorithm clearly
supporting effective and efficient top-k keyword search in
relational databases also describe the frame word which
takes keywords and K as inputs and generates top-k relevant
records. The results of implemented system with Skyline
Sweeping Algorithm show that it is one effective and
efficient style of keyword search.

F. Breadth-First Algorithm

The BFS begins search at a root node and inspects all the
neighboring nodes. Then for each of those neighbor nodes in
turn, it inspects their neighbor nodes which were unvisited,
and so on. In the approach it results the content wise usage
of data or results the searching count based on the searched
content.

III. SYSTEM DESIGN
A. System Architecture

In proposed system, empirical performance evaluation
of relational keyword search systems. Our results indicate
that many existing search techniques do not provide
acceptable performance for realistic retrieval tasks. In
particular, memory consumption precludes many search

Gurmeet
Typewritten Text
196

 Volume 5, Issue 1 SEP 2015

IJRAET

techniques from scaling beyond small datasets with tens of
which gives set of clusters and searching the required

thousands of vertices. We also explore the relationship
between execution time and factors varied in previous
evaluations; our analysis indicates that these factors have
relatively little impact on performance. In summary, our
work confirms previous claims regarding the unacceptable
performance of these systems and underscores the need for
standardization as exemplified by the IR community when
evaluating these retrieval systems. Our results should serve
as a challenge to this community because little previous
work has acknowledged these challenges. Moving forward,
we must address several issues. First, we must design
algorithms, data structures, and implementations that
recognize that main memory is limited.

Search techniques must manage their memory utilization
efficiently, swapping data to and from disk as necessary.
Such implementations are unlikely to have performance
characteristics that are similar to existing approaches but

must be used if relational keyword search systems are to
scale to large data sets (e.g., hundreds of millions of tuples).
Second, evaluations should reuse data sets and query
workloads to provide greater consistency of results, for even
our results vary widely depending on which data set is
considered. Fortunately, our evaluation benchmark is
beginning to gain traction in this area as evidenced by
others’ adoption of it for their evaluations. Third, the
practice of researchers implementing search techniques may
account for some evaluation discrepancies. Making the
original source code (or a binary distribution that accepts a
database URL and query as input) available to other
researchers would greatly reduce the likelihood that
observed differences are implementation artifacts.

of queries that either did not complete execution within 1

hour or exhausted the total amount of virtual memory. Most

search techniques complete all the MONDIAL queries with

mean execution times ranging from less than a second to

several hundred seconds. Results for IMDb and Wikipedia

are more troubling. Only DISCOVER and DISCOVER-II

completes any IMDb queries, and their mean execution time

is several minutes. DPBF joins these two systems by

completing all the Wikipedia queries, but all three systems’

mean execution times are less than ideal, ranging from 6–30

seconds.

To summarize these results, existing search techniques

provide reasonable performance only on the smallest dataset

(MONDIAL). Performance degrades significantly when we

consider a dataset with hundreds of thousands of tuples

(Wikipedia) and becomes unacceptable for millions of tuples

(IMDb). The memory consumption for these algorithms is

considerably higher than reported, preventing most search

techniques from searching IMDb.

Gurmeet
Typewritten Text
197

 Volume 5, Issue 1 SEP 2015

IJRAET

better. The errors bars provide 95% confidence intervals
for the mean. Systems are ordered by publication date
and the retrieval depth was 100 results.

In terms of overall search effectiveness (MAP in Table III),
the various search techniques vary widely. Not surprisingly,
effectiveness is highest for our smallest dataset. The best
systems, DPBF and BLINKS, perform exceedingly well. We
note that these scores are considerably higher than those that
appear in IR venues (e.g., the Text RE trivial Conference
(TREC)), which likely reflects the small size of the
MONDIAL database. If we accept DISCOVER and
DISCOVER-II’s trend as representative, we would expect
search effectiveness to fall when we consider larger datasets.
Unlike performance, which is generally consistent among
systems, search effectiveness differs considerably. For
examples, DISCOVER-II performs poorly (relative to the
other ranking schemes) for MONDIAL, but DISCOVER-II
proffers the greatest search effectiveness on IMDb and
Wikipedia. Ranking schemes that perform well for
MONDIAL queries are not necessarily good for Wikipedia
queries. Hence it is important to balance performance
concerns with a consideration of search effectiveness. Given
the few systems that complete the queries for IMDb and
Wikipedia, we focus on results for the MONDIAL dataset in
the remainder of this section

Gurmeet
Typewritten Text
198

 Volume 5, Issue 1 SEP 2015

IJRAET

A. Execution Time

Fig. 2 displays the total execution time for each system
on a selection of MONDIAL queries, and Fig. 3 shows box
plots of the execution times for all queries on the
MONDIAL dataset. Bars are omitted for queries that a
system failed to complete (due to either timing out or
exhausting memory). As indicated by the error bars in the
graph, our execution times are repeatable and consistent.
Figs 2 and 3 confirm the performance trends in Table III but
also illustrate the variation in execution time among
different queries. In particular, the range in execution time
for a search technique can be several orders of magnitude.
Most search techniques also have outliers in their execution
times; these outliers indicate that the performance of these
search heuristics varies considerably due to characteristics of
the dataset or queries.

1. Number of search terms

A number of evaluations, report mean execution time for
queries that contain different numbers of search terms to
show that performance remains acceptable even when
queries contain more keywords. Fig. 4 graphs these values
for the different systems. Note that some systems fail to
complete some queries, which accounts for the omissions in
the graph. As evidenced by the graph, queries that contain
more search terms require more time to execute on average
than queries than contain fewer search terms. The relative
performance among the different systems is unchanged from
Fig.2. These results are similar to those published in
previous evaluations. Using Fig.4 as evidence for the
efficiency of a particular search technique can be
misleading. In Fig.5, we show box plots of the execution

times of BANKS and DISCOVER-II to illustrate the range
in execution times encountered across the various queries.
As evidenced by these graphs, several queries have
execution times much higher than the rest. These queries
give the system the appearance of unpredictable
performance, especially when the query is similar to another
one that completes quickly

For example, the query ―Uzbek Asiaǁ for BANKS has
an execution time three times greater than the query ―Hutu
Africa.ǁ DISCOVER-II has similar outliers; the query

―Panama Omanǁ requires 3.5 seconds to complete even
though the query ―Libya Australiaǁ completes in less than
half that time. From a user’s perspective, these queries
would be expected to have similar execution times. These
outliers (which are even more pronounced for the other
datasets) suggest that simply looking at mean execution time
for different numbers of query keywords does not reveal the
complete performance profile of these systems. Moreover,
existing work does not adequately explain the existence of
these outliers and how to improve the performance of these
queries

Gurmeet
Typewritten Text
199

 Volume 5, Issue 1 SEP 2015

IJRAET

number of tuples containing search terms. This result is

counter-intuitive, as one expects the time to increase when
more nodes (and all their relationships) must be considered.
One possible explanation for this phenomenon is that the
search space in the interior of the data graph (i.e., the
number of nodes that must be explored when searching) is
not correlated with the frequency of the keywords in the
database implies the opposite; we believe additional
experiments are warranted as part of future work

3. Retrieval depth

Table IV considers the scalability of the various search
techniques at different retrieval depths—10 and 100 results.
Continuing this analysis to higher retrieval depths is not
particularly useful given the small size of the MONDIAL
database and given that most systems identify all the
relevant results within the first 100 results that they return.
As evidenced by the table, both the absolute and the
percentage slowdown vary widely. However, neither of
these values is particularly worrisome: with the exception of
BANKS-II, the slowdown is relatively small, and BANKS-II
starts with the highest execution time.

The negligible slowdown suggests that—with regard to

execute time—all the systems will scale easily to larger
retrieval depths (e.g., 1000 results). More importantly, only
half the systems provide reasonable performance (a few
seconds to execute each query) even at a small retrieval
depth.

B. Response Time
In addition to overall search time, the response time of a
keyword search system is of critical importance. Systems that
support top-k query processing need not enumerate all possible
results before outputting some to the user. Outputting a small
number of results (e.g., 10) allows the user to examine the
initial results and to refine the query if these results are not
satisfactory. In Table V, we show the mean response time to
retrieve the first and tenth query result. The table also includes
P@k, to show the quality of the results retrieved at that retrieval
depth. Interestingly, the response time for most systems is very
close to the total execution time, particularly for k = 10. The
ratio of response time to the total execution time provided in the
table shows that some scoring functions are not good at quickly
identifying the best search results. For example, DISCOVER-II
identifies the highest ranked search result at the same time as it
identifies the tenth ranked result because its bound on the
possible score of unseen results falls very rapidly after
enumerating more than k results. In general, the proximity
search systems manage to identify results more incrementally
than the schema-based approaches. Another issue of interest is
the overhead required to retrieve additional search results. In
other words, how much additional time is spent maintaining

Gurmeet
Typewritten Text

Gurmeet
Typewritten Text
200

 Volume 5, Issue 1 SEP 2015

IJRAET

enough state to retrieve 100 results instead of just 10? Table
VII gives the execution time to retrieve 10 results and the
response time to retrieve the first 10 results of 100. With the
exception of BANKS-II, the total overhead is minimal—less
than a few seconds. In the case of STAR, the percentage
slowdown is high, but this value is not significant given that the
execution time is so low

C. Memory consumption

Limiting the graph-based approaches to 2 GB of virtual
memory might unfairly bias our results toward the schema
based approaches. The schema-based systems offload much of
their work to the underlying database, which swaps temporary
data (e.g., the results of a join) to disk as needed.

 Hence, DISCOVER and DISCOVER-II might also require

a significant amount of memory, and a more fair evaluation
would allow the graph-based techniques to page data to disk.
To investigate this possibility, we ran all the systems with

3 GB of physical memory and 5 GB of virtual memory.
Note that once a system consumes the available physical
memory, the operating system’s virtual memory manager is
responsible for paging data to and from disk.

Table VI contains the results of this experiment.

The overall trends are relatively unchanged from Table

III although BLINKS does complete all the MONDIAL
queries with the help of the additional memory.

 The precipitous drop in execution time suggests that

Java’s garbage collector was responsible for the majority of
BLINKS’s execution time, and this overhead was
responsible for BLINKS’s poor performance.

The other graph-based systems do not significantly

improve from the additional virtual memory. In most cases,
we observed severe thrashing, which merely transformed
memory exceptions into timeout exceptions

Initial Memory Consumption: To better understand the
memory utilization of the systems—particularly the
overhead of an in-memory data graph, we measured each
system’s memory footprint immediately prior to executing a
query. The results are shown in Table VIII. The left column
of values gives the size of the graph representation of the
database; the right column of values gives the total size of
all data structures used by the search techniques (e.g.,
additional index structures). As evidenced by the table, the
schema-based systems consume very little memory, most of
which is used to store the database schema. In contrast, the
graph-based search techniques require considerably more
memory to store their data graph.

When compared to the total amount of virtual memory
available, the size of the MONDIAL data graphs are quite
small, roughly two orders of magnitude smaller than the size
of the heap. Hence, the data graph itself cannot account for
the high memory utilization of the systems; instead, the
amount of state maintained by the algorithms (not shown by
the table) must account for the excessive memory
consumption. For example, BANKS’s worst-case memory
consumption is O (|V|2) where |V| is the number of vertices
in the data graph. It is easy to show that in the worst case
BANKS will require in excess of 1 GB of state during a
search of the MONDIAL database even if we ignore the

Gurmeet
Typewritten Text
201

 Volume 5, Issue 1 SEP 2015

IJRAET

overhead of the requisite data structures (e.g., linked lists).
However, we do note that the amount of space required to
store a data graph may prevent these systems from searching
other, larger datasets. For example, BANKS requires 1
GB of memory for the data graph of the IMDb subset; this
subset is roughly 40 times smaller than the entire database.
When coupled with the state it maintains during a search, it
is easy to see why BANKS exhausts the available heap
space for many queries on this dataset D. Threats to
Validity

Our results naturally depend upon our evaluation
benchmark. By using publicly available datasets and query
workloads, we hope to improve the repeatability of these
experiments. In an ideal world, we would re-implement all
the techniques that have been proposed to date in the
literature to ensure the fairest possible comparison. It is our
experience—from implementing multiple systems from
scratch—that this task is much more complex than one
might initially expect. In general, more recent systems tend
to have more complex query processing algorithms, which
are more difficult to implement optimally, and few
researchers seem willing to share their source code (or
binaries) to enable more extensive evaluations. In the
following paragraphs, we consider some of the
implementation differences among the systems and how
these differences might affect our results

The implementation of DPBF that we obtained was in

C++ rather than Java. We do not know how much of
DPBF’s performance advantage (if any) is due to the
implementation language, but we have no evidence that the
implementation language plays a significant factor in our
results. For example, STAR provides roughly the same
performance as
DBPF, and DPBF’s performance for Wikipedia queries is
comparable to DISCOVER and DISCOVER-II when we
ignore the length of time required to scan the database’s full
text indexes instead of storing the inverted index entirely
within main memory (as a hash table). Simply rewriting
DPBF in Java would not necessarily improve the validity of
our experiments because other implementation decisions can
also affect results. For example, a compressed graph
representation would allow systems to scale better but would
hurt the performance of systems that touch more nodes and
edges during a traversal.

The choice of the graph data structure might significantly
impact the proximity search systems. All the Java
implementations use the JGraphT library, which is designed
to scale to millions of vertices and edges. We found that a
lower bound for its memory consumption is 32.|V| + 56 .|E|
bytes where |V| is the number of graph vertices and |E| is the
number of graph edges. In practice, its memory consumption
can be significantly higher because it relies on Java’s
dynamically sized collections for storage the original
implementation of BANKS-II requires only |V| + 8 .|E| bytes
for its data graph, making it considerably more efficient than

the general-purpose graph library used for our evaluation.
While an array-based implementation is more compact and
can provide better performance, it does have downsides
when updating the index. Performance issues that arise when
updating the data graph have not been the focus of previous
work and have not been empirically evaluated for these
systems. While there are other differences between the
experimental setups for different search techniques (e.g.,
Windows vs. Linux and Intel vs. AMD CPUs), we believe
that these differences are minor in the scope of the overall
evaluation. For example, DPBF was executed on a quad-
core CPU, but the implementation is not multi-threaded so
the additional processor cores are not significant.

When we executed the Java implementations on the same
machine that we used for DPBF (which was possible for
sample queries on our smaller datasets), we did not notice a
significant difference in execution times. Our results for
MAP (Table III) differ slightly from previously published
results. Theoretically our results should be strictly lower for
this metric because our retrieval depth is smaller, but some
systems actually improve. The difference is due to the
exceptions—after an exception (e.g., timeout), we return any
results identified by the system, even if we are uncertain of
the results’ final ranking. Hence, the uncertain ranking is
actually better than the final ranking that the system would
enforce if allowed to continue to execute.

V. CONCLUSION

Overall we will study all the existing techniques which is

available in market. Each system has some advantages and
some issues. We compare all the techniques and checked the
performance. So finally conclude that any existing system
cannot fulfill all the requirement of keyword query search.
They require more space and time; also some techniques are
limited for particular dataset. The Proposed technique is
satisfying number of requirement of keyword query search
using different algorithms. The performance of keyword
search is also the better to compare other and it shows the
actual result rather than tentative. It also shows the ranking
of keyword and not requires the knowledge of database
queries. Compare to existing algorithm it is a fast process.
As a future work we can search the techniques which are
useful for all the datasets, means only single technique can
be used for MONDIAL, IMDb etc. Further research is
necessary to investigate the experimental design decisions
that have a significant impact on the evaluation of relational
keyword search system.

Gurmeet
Typewritten Text
202

 Volume 5, Issue 1 SEP 2015

IJRAET

VI. REFERENCES
[1] Joel Coffman, Alfred C. Weaver, ―An Empirical
Performance Evaluation of Relational Keyword Search

Systemsǁ, IEEE Transactions on Knowledge and Data

Engineering, (Volume: 26, Issue: 1) Year: 2014.
[2] D. Fallows, ―Search Engine Use,ǁ technical report, Pew

Internet and Am. Life Project, http://www.pewinter net.org/Reports/2008/Search-Engine-Use.aspx. Aug. 2008.

[3] Com Score, ―Global Search Market Grows 46 Percent in

2009,ǁ http://www.comscore.com/Press_Events/Press_ Releases/2010/1/Global_Search_Market_Grows_46_%_in_2 009,
Jan. 2010.

[4] J. Coffman and A.C. Weaver, ―A Framework for Evaluating Database Keyword Search Strategies,ǁ Proc. 19th ACM
Int’l Conf. Information and Knowledge Management

(CIKM ’10), pp. 729-738, Oct. 2010.

[5] Y. Chen, W. Wang, Z. Liu, and X. Lin, ―Keyword Search on Structured and Semi-Structured Data,ǁ Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’09), pp. 1005-1010, June 2009.

[6] W. Webber, ―Evaluating the Effectiveness of Keyword Search,ǁ IEEE Data Eng. Bull., vol. 33, no. 1, pp. 54-59, Mar.
2010.

[7] A. Baid, I. Rae, J. Li, A. Doan, and J. Naughton, ―Toward Scalable Keyword Search over Relational Data,ǁ Proc.
VLDB Endowment, vol. 3, no. 1, pp. 140-149, 2010.

[8] Q. Su and J. Widom, ―Indexing Relational Database

Content Offline for Efficient Keyword-Based Search,ǁ Proc. Ninth Int’l Database Eng. and Application Symp. (IDEAS ’05),
pp. 297-306, July 2005.

[9] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R.

Desai, and H. Karambelkar, ―Bidirectional Expansion For Keyword Search on Graph Databases,ǁ Proc. 31st Int’l Conf.
Very Large Data Bases (VLDB ’05), pp. 505-516, Aug. 2005.

[10] H. He, H. Wang, J. Yang, and P.S. Yu, ―BLINKS: Ranked Keyword Searches on Graphs,ǁ Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’07), pp. 305-316, June 2007.

[11] G. Kasneci, M. Ramanath, M. Sozio, F.M. Suchanek, and G. Weikum, ―STAR: Steiner-Tree Approximation in
Relationship Graphs,ǁ Proc. Int’l Conf. Data Eng. (ICDE ’09), pp. 868-879, Mar. 2009.

[12] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan, ―Keyword Searching and Browsing in

Databases Using BANKS,ǁ Proc. 18th Int’l Conf. Data Eng. (ICDE ’02), pp. 431-440, Feb. 2002

Gurmeet
Typewritten Text
203

