
                                   Volume 4, Issue 2 JULY 2015 

IJRAET  

ERROR DETECTING AND CORRECTING CODE USING ORTHOGONAL 
LATIN SQUARE CODES IN FPGA TECHNOLOGY 

                            MEGHAVATH LAL SINGH 1                     K V MURALI MOHAN2 

                           lalsingh214@gmail.com1                         kvmmece@gmail.com2 

 1PG Scholar, Dept of ECE, Holy Mary Institute of Technology, Keesara, Rangareddy, 
Hyderabad, Telangana, India  

2Professor, HOD of ECE, Holy Mary Institute of Technology, Keesara, Rangareddy, 
Hyderabad, Telangana, India 

 
  

 Abstract—Reliability is a major concern in 
advanced electronic circuits. Errors caused for 
example by radiation become more common as 
technology scales. To ensure that those errors do not 
affect  the  circuit  functionality  a  number  of  
mitigation  techniques  can  be  used.  Among  them,  
Error Correction  Codes  (ECC)  are  commonly  
used  to  protect  memories  and  registers  in  
electronic circuits.  When  ECCs  are  used,  it  is  of  
interest  that  in  addition  to  correcting  a  given  
number  of errors,  the  code  can  also  detect  errors  
exceeding  that  number.  This  ensures  that  
uncorrectable errors are detected and therefore silent 
data corruption does not occur. Among the ECCs 
used to protect circuits, one option is  Orthogonal 
Latin Squares (OLS) codes for which decoding can 
be efficiently  implemented.  In  this  paper,  an  
enhancement  of  the  decoding  for  Double  Error 
Correction (DEC) OLS codes is proposed. The 
proposed scheme tries to reduce the probability of 
silent data corruption by implementing mechanisms 
to detect errors that affect more than two bits. 
 
Keywords—Concurrent  error  detection,  error  
correction  codes  (ECC),  Latin  squares,  majority  
logic  decoding (MLD), parity, memory. 
 

I. Introduction 
 

The general idea for achieving error 
detection and correction is to add some redundancy  
which  means to add some extra  data  to  a  message,  
which  receiver  can  use  to  check  uniformity  of  
the  delivered  message,  and  to  pick  up  data 
determined to be corrupt. Error-detection and 
correction scheme may be systematic or it may be 
non-systematic. In the system of the module non-
systematic code, an encoded is achieved by 
transformation of the message which  has  least 
possibility  of  number  of  bits  present  in  the  
message  which  is  being  converted.  Another  
classification  is  the  type  of  systematic module 
unique data is sent by the transmitter which is 

attached by a fixed number of parity data like check 
bits  that  obtained  from  the  data  bits.  The  
receiver  applies  the  same  algorithm  when  only  
detection  of  the  error  is required to the received 
data bits which is then compared with its output with 
the receive check bits if the values does not match, 
there we conclude that an error has crept at some 
point in the process of transmission. Error correcting 
codes are regularly used in lower-layer 
communication, as well as for reliable storage in 
media such as CDs, DVDs, hard disks and RAM. 

 
Fig.1. Illustration of OS-MLD decoding for OLS 
codes 

 
Provision  against  soft  errors  that  

apparent  they  as  the  bit-flips  in  memory  is  the  
main  motto  of  error  detection  and  correction. 
Several techniques are used present to midi gate 
upsets in memories. For example, the Bose – 
Chaudhuri– Hocquenghem codes, Reed–Solomon 
codes, punctured difference set codes, and matrix 
codes has been used to contact with MCUs in 
memories. But the above codes mentioned requires 
more area, power, and delay overheads since the  
encoding and decoding circuits are more complex in 
these complicated codes. Reed-Muller code is 
another protection  code  that  is  able  to  detect  and  
correct  additional  error  besides  a  Hamming  code.  
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But the major drawback of this protection code is the 
more area it requires and the power penalties. 

Reliability is a major issue for advanced 
electronic circuits.  As technology scales, circuits 
become more  vulnerable  to  error  sources  such  as  
noise  and  radiation  and  also  to  manufacturing  
defects  and process variations. A number of error 
mitigation techniques can be used to ensure that 
errors do not compromise the circuit functionality. 
Among those, Error Correction Codes (ECCs) are 
commonly used to protect memories or registers. 
Traditionally, Single Error Correction (SEC) codes 
that can correct one bit error in a word are used as 
they are simple to implement and require few 
additional bits. A SEC code requires a minimum 
Hamming distance between code-words of three. 
This means that if a double  error  occurs,  the  
erroneous  word  can  be  at  distance  of  one  from  
another  valid  word.  In that case, the decoder will 
miss-correct the word creating an undetected error. 
To avoid this issue, Single Error Correction Double 
Error Detection (SEC-DED) codes can be used.  
Those codes have a minimum Hamming distance of 
four. Therefore, a double error can in the worst case 
cause the word to be at a distance of two of any other 
valid word so that miss-correction is not possible. 
More generally, for a code that can correct t errors, it 
is of interest to also detect t+1 errors. This reduces 
the probability of undetected errors that can cause 
Silent Data Corruption (SDC). SDC is especially 
dangerous as the system continues its operation 
unaware of the error and this can lead to further data 
corruption or to an erroneous behavior long after the 
original error occurred. 
 

II. Literature Survey 
 

Most prior work in memory ECC has 
focused on low failure rates present at normal 
operating voltages, and has not focused on the 
problem of persistent failures in caches operating at 
ultra low voltage where defect rates are very high.  

For high defect rates, memory repair 
schemes based on spare rows and columns are not 
effective. Much higher levels of redundancy are 
required that can tolerate multi-bit errors in each 
cache line. In addition to the techniques in 
[Wilkerson 08] mentioned earlier, other prior work 
includes the two dimensional ECC proposed by [Kim 
07] which tolerates multiple bit errors due to non-
persistent faults, but is slow and complicated to 
decode.  
 Similarly the approach in [Kim 98] can 
tolerate as many faults as can be repaired by spare 
columns, which would be insufficient in the present 
context with high bit-error rate. In some cases, check 
bits are used along with spare rows and columns to 
get combined fault-tolerance. In [Stapper 92], 
interleaved words with redundant word lines and bit 

lines are used in addition to the check bits on each 
word. [Su 05] proposes an approach where the hard 
errors are mitigated by mapping to redundant 
elements and ECC is used for the soft errors. Such 
approaches will not be able to provide requisite fault 
tolerance under high bit error rates when there are 
not enough redundant elements to map all the hard 
errors. 
 The application of OLS codes for handling 
the high defect rates in low power caches as 
described in [Christi 09] provides a more attractive 
solution. While OLS codes require more redundancy 
than conventional ECC, the one-step majority 
encoding and decoding process is very fast and can 
be scaled up for handling large numbers of errors as 
opposed to BCH codes, which while providing the 
desired level of reliability requires multi-cycles for 
decoding [Lin 83]. The post-manufacturing 
customization approach proposed in this paper can be 
used to reduce the number of check bits and hence 
the amount of redundancy required in the memory 
while still providing the desired level of reliability. 
Note that the proposed approach does not reduce the 
hardware requirements for the OLS ECC as the 
whole code needs to be implemented on-chip since 
the location of the defects is not known until post-
manufacturing test is performed. 

III.Orthogonal Latin Squares codes 
 
 The concept of Latin squares and their 
applications are well known [12]. A Latin square of 
size  m is an  m  *  m  matrix that has permutations 
of the digits  0,1,..m-1  in both its rows and columns. 
For each value of m  there can be more than one 
Latin square. When that is the case, two Latin 
squares are said to  be  orthogonal  if  when  they  are  
superimposed  every  ordered  pair  of  elements  
appears  only  once. Orthogonal Latin Squares (OLS) 
codes are derived from Orthogonal Latin squares [9]. 
These codes have k=m2 data bits and 2tm check bits 
where t is the number of errors that the code can 
correct. For a Double Error Correction (DEC) code 
t=2 and therefore 4m check bits are used. One 
advantage of OLS codes is that their construction is 
modular. This means that to obtain a code that can 
correct t+1 errors, simply 2m check bits are added to 
the code that can correct t errors. The modular 
property enables the selection of the error correction 
capability for a given word size. As  mentioned  in  
the  introduction,  OLS  codes  can  be  decoded  
using  One  Step  Majority  Logic Decoding  (OS-
MLD)  as  each  data  bit  participates  in  exactly  2t  
check  bits  and  each  other  bit  participates in at 
most one of those check bits. This enables a simple 
correction when the number of bits in error is t or 
less. The 2t check bits are recomputed and a majority 
vote is taken, if a value of one is  obtained,  the  bit  
is  in  error  and  must  be  corrected.  Otherwise the 
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bit is correct.    As  long  as  the number of errors is  t  
or less  this ensures the error correction as the 
remaining  t-1  errors can, in the worst case affect t-1 
check bits so that still a majority of t+1 triggers the 
correction of an erroneous bit. For an OLS code that 
can correct t errors using OS-MLD, t+1 errors can 
cause miss-corrections. This occurs for example if 
the errors affect t+1 parity bits in which bit di 
participates as this bit will be miss-corrected. The 
same occurs when the number of errors is larger than 
t+1. Each of the 2t check bits in which a data bit 
participates is taken from a group of m parity bits. 
Those groups are bits 1 to m, m+1 to 2m, 2m+1 to 
3m and 3m+1 to 4m. 

 

 
 
Fig 2: Parity check matrix for OLS code   having k 
and t as 16&1 
 The „H‟ matrix for OLS codes is build from 
their properties. The matrix is capable of correcting 
single type error. By the  fact  that  in  direction  of  
the  modular  structure  it  might  be  able  to  correct  
many  errors.  They have check bits of number “2tm” 
in which, „t‟ stands for numeral of errors such that 
code corrects. If we wanted to correct a double bit 
then we have „2‟ as the value of t and thereby the 
check bits required are 4m.the H matrix , of Single 
Error Code „OLS‟ code is construct as : 

 
 
a. In the above, I2m is the identity matrix of size 2 m. 
b. M1, M2 are the matrices of given size m × m2.  
„‟The matrix M1 have m ones in respective rows. 
For the rth row, the 1‟s are at the position (r − 1) × m 
+ 1,(r − 1)× m + 2,………….(r − 1) × m+ m − 1, (r − 
1) × m + m”. The matrix M2 is structured as:M2 = 
[Im Im . . . Im]  (2) 

 
For the given value 4 for m, the matrices 

M1 and M2 can be evidently experiential in Fig. H 
Matrix in the check bits we remove is evidently the 
G Matrix 

 

 
On concluding the above mentioned, it is 

evident that the encoder is intriguing m2 data bits 
and computing 2tm parity check bits by using G 
matrix . These resulted from the Latin Squares have 
the below properties: 
a. Exactly in 2t parity checks each info bit is 
involved. 
b. Utmost one in parity check bits info bits takes 
participation. 

We use the above properties in the later 
section to examine our proposed technique. 
 

IV. Proposed Method 
 
 The proposed method is based on the 
observation that by construction, the groups formed 
by the mparity bits in each Mi matrix have at most a 
one in every column of H.For the 
example in Fig. 2, those groups correspond to bits (or 
rows) 1–4 (M1), 5–8 (M2), 9–12 (M3), and 13–16 
(M4). Therefore, any combination of four bits from 
one of those groups will at most sharea one with the 
existing columns inH. For example, the combination 
formed by bits 1, 2, 3, and 4 shares only bit 1 with 
columns 1, 2, 3,and 4. This is the condition needed to 
enable OS-MLD. Therefore, combinations of four 
bits taken all from one of those groups can be used to 
add data bit columns to the Hmatrix. For the code 
with k=16 andt =2 shown in Fig. 2, we have m=4. 
Hence, one combination can be formed in each group 
by setting all the positions in the group to one. This 
is shown in Fig. 3, where the columns added are 
highlighted. In this case, the data bit block is 
extended fromk=16 to 
k=20 bits. 
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Fig. 3. Parity check matrix H for the extended OLS 
code with k=20 and t =2 
 
 The proposed method first divides the parity 
check bits in groups of m bits given by the Mi 
matrices. Then, the second step is for each group to 
find the combinations of 2t bits such that any pair of 
them share at most one bit. This second step can be 
seen as that of constructing an OS-MLD code with m 
parity check bits. Obviously, to keep the OS-MLD 
property for the extended code, the combinations 
formed for each group have to share at most one bit 
with the combinations formed in the other 2t −1 
groups. This is not an issue as by construction, 
different groups do not share any bit. When m is 
small finding, such combinations is easy. For 
example, in the case considered in Fig. 3, there is 
only one possible combination per group. When m is 
larger, several combinations can be formed in each 
group. This occurs, for example, when m=8. In this 
case, the OLS code has a data block size k =64. With 
eight positions in each group, now two combinations 
of four of them that share at most one position can be 
formed. This means that the extended code will have 
eight (4×2) additional data bits. As the size of the 
OLS code becomes larger, the number of 
combinations in a group also grows. For the case 
m=16 and k =256, each group has 16 elements. 
Interestingly enough, there are 20 combinations of 
four elements that share at most one element. In fact, 
those combinations are obtained using the extended 
OLS code shown in Fig. 3 in each of the groups. 
Therefore, in this case, 4×20=80 data bits can be 
added in the extended code. The parameters of the 
extended codes are shown in Table I, where n−k 
=2tm is the number of parity bits. The data block size 
for the original OLS codes (kOLS) is also shown for 
reference The method can be applied to the general 
case of an OLS code with k =m2 that can correct t 
errors. Such a code has 2tm parity bits that as before 
are divided in groups ofmbits. The code can be 
extended by selecting combinations of 2t parity bits 
taken from each of the groups. These combinations 
can be added to the code as long as any pair of the 
new combinations share at most one bit. When m is 
small, a set of such combinations with maximum size 
can be easily found. However, as m grows, finding 
such a set is far from trivial (as mentioned before, 
solving that problem is equivalent to designing an 
OS-MLD code with m parity bits that can correct t 
errors). An upper bound on the number of possible 
combinations can be derived by observing that any 
pair of bits can appear only in one combination. 
Because each combination has 2t bits, there are (2t 2) 
pairs in each combination. The number of possible 
pairs in each group of m bits is m 2. Therefore, the 
number of combinations NG in a group of m bits has 
to be such that  

 

 
 One particular case for which a simple 
solution can be found is when m=2t ×l. In this case, 
an OLS code with a smaller data block size (l2) can 
be used in each group. One example for t =2 is when 
m=16 (k=256) for which the OLS code with block 
size k=42 can be used in each group as explained 
before. Similarly, for t =2, whenk=1024 (m=32) the 
OLS code of size k =82 can be used in each group. 
 

V. Conclusion 
 
 In  this  brief,  a  CED  technique  for  OLS  
codes encoders  and  syndrome  computation  was  
proposed.  The proposed technique  took advantage 
of the properties of OLS codes  to  design  a  parity  
prediction  scheme  that  could  be efficiently  
implemented  and  detects  all  errors  that  affect  a 
single circuit node. The technique was evaluated for 
different word sizes, which showed that for large 
words the overhead is small.  This  is  interesting  as  
large  word  sizes  are  used,  for example, in caches 
for which OLS codes have been recently proposed.  
The  proposed  error  checking  scheme  required  a 
significant delay; however, its impact on access time 
could be minimized. This was achieved by 
performing the checking in parallel with the writing 
of the data in the case of the encoder and in parallel 
with the majority voting and error correction in the 
case of the decoder.In  a  general  case,  the  
proposed  scheme  required  a much  larger  overhead  
as  most  ECCs  did  not  have  the properties of OLS 
codes. This limited the applicability of the proposed 
CED scheme to OLS codes. The availability of low 
overhead  error  detection  techniques  for  the  
encoder  and syndrome computation is an additional 
reason to consider the use of OLS codes in high-
speed memories and caches. 
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