
 Volume 4, Issue 2 JULY 2015

IJRAET

ERROR DETECTING AND CORRECTING CODE USING ORTHOGONAL
LATIN SQUARE CODES IN FPGA TECHNOLOGY

 MEGHAVATH LAL SINGH 1 K V MURALI MOHAN2

 lalsingh214@gmail.com1 kvmmece@gmail.com2

 1PG Scholar, Dept of ECE, Holy Mary Institute of Technology, Keesara, Rangareddy,
Hyderabad, Telangana, India

2Professor, HOD of ECE, Holy Mary Institute of Technology, Keesara, Rangareddy,
Hyderabad, Telangana, India

 Abstract—Reliability is a major concern in
advanced electronic circuits. Errors caused for
example by radiation become more common as
technology scales. To ensure that those errors do not
affect the circuit functionality a number of
mitigation techniques can be used. Among them,
Error Correction Codes (ECC) are commonly
used to protect memories and registers in
electronic circuits. When ECCs are used, it is of
interest that in addition to correcting a given
number of errors, the code can also detect errors
exceeding that number. This ensures that
uncorrectable errors are detected and therefore silent
data corruption does not occur. Among the ECCs
used to protect circuits, one option is Orthogonal
Latin Squares (OLS) codes for which decoding can
be efficiently implemented. In this paper, an
enhancement of the decoding for Double Error
Correction (DEC) OLS codes is proposed. The
proposed scheme tries to reduce the probability of
silent data corruption by implementing mechanisms
to detect errors that affect more than two bits.

Keywords—Concurrent error detection, error
correction codes (ECC), Latin squares, majority
logic decoding (MLD), parity, memory.

I. Introduction

The general idea for achieving error
detection and correction is to add some redundancy
which means to add some extra data to a message,
which receiver can use to check uniformity of
the delivered message, and to pick up data
determined to be corrupt. Error-detection and
correction scheme may be systematic or it may be
non-systematic. In the system of the module non-
systematic code, an encoded is achieved by
transformation of the message which has least
possibility of number of bits present in the
message which is being converted. Another
classification is the type of systematic module
unique data is sent by the transmitter which is

attached by a fixed number of parity data like check
bits that obtained from the data bits. The
receiver applies the same algorithm when only
detection of the error is required to the received
data bits which is then compared with its output with
the receive check bits if the values does not match,
there we conclude that an error has crept at some
point in the process of transmission. Error correcting
codes are regularly used in lower-layer
communication, as well as for reliable storage in
media such as CDs, DVDs, hard disks and RAM.

Fig.1. Illustration of OS-MLD decoding for OLS
codes

Provision against soft errors that

apparent they as the bit-flips in memory is the
main motto of error detection and correction.
Several techniques are used present to midi gate
upsets in memories. For example, the Bose –
Chaudhuri– Hocquenghem codes, Reed–Solomon
codes, punctured difference set codes, and matrix
codes has been used to contact with MCUs in
memories. But the above codes mentioned requires
more area, power, and delay overheads since the
encoding and decoding circuits are more complex in
these complicated codes. Reed-Muller code is
another protection code that is able to detect and
correct additional error besides a Hamming code.

Gurmeet
Typewritten Text
317

 Volume 4, Issue 2 JULY 2015

IJRAET

But the major drawback of this protection code is the
more area it requires and the power penalties.

Reliability is a major issue for advanced
electronic circuits. As technology scales, circuits
become more vulnerable to error sources such as
noise and radiation and also to manufacturing
defects and process variations. A number of error
mitigation techniques can be used to ensure that
errors do not compromise the circuit functionality.
Among those, Error Correction Codes (ECCs) are
commonly used to protect memories or registers.
Traditionally, Single Error Correction (SEC) codes
that can correct one bit error in a word are used as
they are simple to implement and require few
additional bits. A SEC code requires a minimum
Hamming distance between code-words of three.
This means that if a double error occurs, the
erroneous word can be at distance of one from
another valid word. In that case, the decoder will
miss-correct the word creating an undetected error.
To avoid this issue, Single Error Correction Double
Error Detection (SEC-DED) codes can be used.
Those codes have a minimum Hamming distance of
four. Therefore, a double error can in the worst case
cause the word to be at a distance of two of any other
valid word so that miss-correction is not possible.
More generally, for a code that can correct t errors, it
is of interest to also detect t+1 errors. This reduces
the probability of undetected errors that can cause
Silent Data Corruption (SDC). SDC is especially
dangerous as the system continues its operation
unaware of the error and this can lead to further data
corruption or to an erroneous behavior long after the
original error occurred.

II. Literature Survey

Most prior work in memory ECC has
focused on low failure rates present at normal
operating voltages, and has not focused on the
problem of persistent failures in caches operating at
ultra low voltage where defect rates are very high.

For high defect rates, memory repair
schemes based on spare rows and columns are not
effective. Much higher levels of redundancy are
required that can tolerate multi-bit errors in each
cache line. In addition to the techniques in
[Wilkerson 08] mentioned earlier, other prior work
includes the two dimensional ECC proposed by [Kim
07] which tolerates multiple bit errors due to non-
persistent faults, but is slow and complicated to
decode.
 Similarly the approach in [Kim 98] can
tolerate as many faults as can be repaired by spare
columns, which would be insufficient in the present
context with high bit-error rate. In some cases, check
bits are used along with spare rows and columns to
get combined fault-tolerance. In [Stapper 92],
interleaved words with redundant word lines and bit

lines are used in addition to the check bits on each
word. [Su 05] proposes an approach where the hard
errors are mitigated by mapping to redundant
elements and ECC is used for the soft errors. Such
approaches will not be able to provide requisite fault
tolerance under high bit error rates when there are
not enough redundant elements to map all the hard
errors.
 The application of OLS codes for handling
the high defect rates in low power caches as
described in [Christi 09] provides a more attractive
solution. While OLS codes require more redundancy
than conventional ECC, the one-step majority
encoding and decoding process is very fast and can
be scaled up for handling large numbers of errors as
opposed to BCH codes, which while providing the
desired level of reliability requires multi-cycles for
decoding [Lin 83]. The post-manufacturing
customization approach proposed in this paper can be
used to reduce the number of check bits and hence
the amount of redundancy required in the memory
while still providing the desired level of reliability.
Note that the proposed approach does not reduce the
hardware requirements for the OLS ECC as the
whole code needs to be implemented on-chip since
the location of the defects is not known until post-
manufacturing test is performed.

III.Orthogonal Latin Squares codes

 The concept of Latin squares and their
applications are well known [12]. A Latin square of
size m is an m * m matrix that has permutations
of the digits 0,1,..m-1 in both its rows and columns.
For each value of m there can be more than one
Latin square. When that is the case, two Latin
squares are said to be orthogonal if when they are
superimposed every ordered pair of elements
appears only once. Orthogonal Latin Squares (OLS)
codes are derived from Orthogonal Latin squares [9].
These codes have k=m2 data bits and 2tm check bits
where t is the number of errors that the code can
correct. For a Double Error Correction (DEC) code
t=2 and therefore 4m check bits are used. One
advantage of OLS codes is that their construction is
modular. This means that to obtain a code that can
correct t+1 errors, simply 2m check bits are added to
the code that can correct t errors. The modular
property enables the selection of the error correction
capability for a given word size. As mentioned in
the introduction, OLS codes can be decoded
using One Step Majority Logic Decoding (OS-
MLD) as each data bit participates in exactly 2t
check bits and each other bit participates in at
most one of those check bits. This enables a simple
correction when the number of bits in error is t or
less. The 2t check bits are recomputed and a majority
vote is taken, if a value of one is obtained, the bit
is in error and must be corrected. Otherwise the

Gurmeet
Typewritten Text
318

 Volume 4, Issue 2 JULY 2015

IJRAET

bit is correct. As long as the number of errors is t
or less this ensures the error correction as the
remaining t-1 errors can, in the worst case affect t-1
check bits so that still a majority of t+1 triggers the
correction of an erroneous bit. For an OLS code that
can correct t errors using OS-MLD, t+1 errors can
cause miss-corrections. This occurs for example if
the errors affect t+1 parity bits in which bit di
participates as this bit will be miss-corrected. The
same occurs when the number of errors is larger than
t+1. Each of the 2t check bits in which a data bit
participates is taken from a group of m parity bits.
Those groups are bits 1 to m, m+1 to 2m, 2m+1 to
3m and 3m+1 to 4m.

Fig 2: Parity check matrix for OLS code having k
and t as 16&1
 The „H‟ matrix for OLS codes is build from
their properties. The matrix is capable of correcting
single type error. By the fact that in direction of
the modular structure it might be able to correct
many errors. They have check bits of number “2tm”
in which, „t‟ stands for numeral of errors such that
code corrects. If we wanted to correct a double bit
then we have „2‟ as the value of t and thereby the
check bits required are 4m.the H matrix , of Single
Error Code „OLS‟ code is construct as :

a. In the above, I2m is the identity matrix of size 2 m.
b. M1, M2 are the matrices of given size m × m2.
„‟The matrix M1 have m ones in respective rows.
For the rth row, the 1‟s are at the position (r − 1) × m
+ 1,(r − 1)× m + 2,………….(r − 1) × m+ m − 1, (r −
1) × m + m”. The matrix M2 is structured as:M2 =
[Im Im . . . Im] (2)

For the given value 4 for m, the matrices

M1 and M2 can be evidently experiential in Fig. H
Matrix in the check bits we remove is evidently the
G Matrix

On concluding the above mentioned, it is

evident that the encoder is intriguing m2 data bits
and computing 2tm parity check bits by using G
matrix . These resulted from the Latin Squares have
the below properties:
a. Exactly in 2t parity checks each info bit is
involved.
b. Utmost one in parity check bits info bits takes
participation.

We use the above properties in the later
section to examine our proposed technique.

IV. Proposed Method

 The proposed method is based on the
observation that by construction, the groups formed
by the mparity bits in each Mi matrix have at most a
one in every column of H.For the
example in Fig. 2, those groups correspond to bits (or
rows) 1–4 (M1), 5–8 (M2), 9–12 (M3), and 13–16
(M4). Therefore, any combination of four bits from
one of those groups will at most sharea one with the
existing columns inH. For example, the combination
formed by bits 1, 2, 3, and 4 shares only bit 1 with
columns 1, 2, 3,and 4. This is the condition needed to
enable OS-MLD. Therefore, combinations of four
bits taken all from one of those groups can be used to
add data bit columns to the Hmatrix. For the code
with k=16 andt =2 shown in Fig. 2, we have m=4.
Hence, one combination can be formed in each group
by setting all the positions in the group to one. This
is shown in Fig. 3, where the columns added are
highlighted. In this case, the data bit block is
extended fromk=16 to
k=20 bits.

Gurmeet
Typewritten Text
319

 Volume 4, Issue 2 JULY 2015

IJRAET

Fig. 3. Parity check matrix H for the extended OLS
code with k=20 and t =2

 The proposed method first divides the parity
check bits in groups of m bits given by the Mi
matrices. Then, the second step is for each group to
find the combinations of 2t bits such that any pair of
them share at most one bit. This second step can be
seen as that of constructing an OS-MLD code with m
parity check bits. Obviously, to keep the OS-MLD
property for the extended code, the combinations
formed for each group have to share at most one bit
with the combinations formed in the other 2t −1
groups. This is not an issue as by construction,
different groups do not share any bit. When m is
small finding, such combinations is easy. For
example, in the case considered in Fig. 3, there is
only one possible combination per group. When m is
larger, several combinations can be formed in each
group. This occurs, for example, when m=8. In this
case, the OLS code has a data block size k =64. With
eight positions in each group, now two combinations
of four of them that share at most one position can be
formed. This means that the extended code will have
eight (4×2) additional data bits. As the size of the
OLS code becomes larger, the number of
combinations in a group also grows. For the case
m=16 and k =256, each group has 16 elements.
Interestingly enough, there are 20 combinations of
four elements that share at most one element. In fact,
those combinations are obtained using the extended
OLS code shown in Fig. 3 in each of the groups.
Therefore, in this case, 4×20=80 data bits can be
added in the extended code. The parameters of the
extended codes are shown in Table I, where n−k
=2tm is the number of parity bits. The data block size
for the original OLS codes (kOLS) is also shown for
reference The method can be applied to the general
case of an OLS code with k =m2 that can correct t
errors. Such a code has 2tm parity bits that as before
are divided in groups ofmbits. The code can be
extended by selecting combinations of 2t parity bits
taken from each of the groups. These combinations
can be added to the code as long as any pair of the
new combinations share at most one bit. When m is
small, a set of such combinations with maximum size
can be easily found. However, as m grows, finding
such a set is far from trivial (as mentioned before,
solving that problem is equivalent to designing an
OS-MLD code with m parity bits that can correct t
errors). An upper bound on the number of possible
combinations can be derived by observing that any
pair of bits can appear only in one combination.
Because each combination has 2t bits, there are (2t 2)
pairs in each combination. The number of possible
pairs in each group of m bits is m 2. Therefore, the
number of combinations NG in a group of m bits has
to be such that

 One particular case for which a simple
solution can be found is when m=2t ×l. In this case,
an OLS code with a smaller data block size (l2) can
be used in each group. One example for t =2 is when
m=16 (k=256) for which the OLS code with block
size k=42 can be used in each group as explained
before. Similarly, for t =2, whenk=1024 (m=32) the
OLS code of size k =82 can be used in each group.

V. Conclusion

 In this brief, a CED technique for OLS
codes encoders and syndrome computation was
proposed. The proposed technique took advantage
of the properties of OLS codes to design a parity
prediction scheme that could be efficiently
implemented and detects all errors that affect a
single circuit node. The technique was evaluated for
different word sizes, which showed that for large
words the overhead is small. This is interesting as
large word sizes are used, for example, in caches
for which OLS codes have been recently proposed.
The proposed error checking scheme required a
significant delay; however, its impact on access time
could be minimized. This was achieved by
performing the checking in parallel with the writing
of the data in the case of the encoder and in parallel
with the majority voting and error correction in the
case of the decoder.In a general case, the
proposed scheme required a much larger overhead
as most ECCs did not have the properties of OLS
codes. This limited the applicability of the proposed
CED scheme to OLS codes. The availability of low
overhead error detection techniques for the
encoder and syndrome computation is an additional
reason to consider the use of OLS codes in high-
speed memories and caches.

REFERENCES

[1] C. L. Chen and M. Y. Hsiao, “Error-correcting
codes for semiconductor memory applications: A
state-of-the-art review,” IBM J. Res. Develop., vol.
28, no. 2, pp. 124–134, Mar. 1984.
[2] E. Fujiwara, Code Design for Dependable
Systems: Theory and Practical Application. New
York: Wiley, 2006.
[3] A. Dutta and N. A. Touba, “Multiple bit upset
tolerant memory using a selective cycle avoidance

Gurmeet
Typewritten Text
320

 Volume 4, Issue 2 JULY 2015

IJRAET

based SEC-DED-DAEC code,” in Proc. IEEE VLSI
Test Symp., May 2007, pp. 349–354.
[4] R. Naseer and J. Draper, “DEC ECC design to
improve memory reliability in sub -100nm
technologies,” in Proc. IEEE Int. Conf. Electron.,
Circuits, Syst., Sep. 2008, pp. 586–589.
[5] G. C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re,
and A. Salsano, “Fault tolerant solid state mass
memory for space appl ications,” IEEE Trans.
Aerosp. Electron. Syst., vol. 41, no. 4, pp. 1353–
1372, Oct. 2005.
[6] S. Lin and D. J. Costello, Error Control Coding,
2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2004.
[7] S. Ghosh and P. D. Lincoln, “Dynamic low-
density parity check codes for fault-tolerant nano-
scale memory,” in Proc. Found. Nanosci., 2007, pp.
1–5.
[8] H. Naeimi and A. DeHon, “Fault secure encoder
and decoder for nanoMemory applications,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol.
17, no. 4, pp. 473–486, Apr. 2009.

BIOGRAPHIES

 Prof. K.V.Murali
Mohan completed his
graduation from Nagpur
University and Post
graduation from JNTU
Kakinada. He is
currently pursing Ph.D
from Acharya Nagarjuna
University, Guntur,

Andhra Pradesh, India. He is working as
Professor and Head, Department of
Electronics and Communication Engineering
in Holy Mary Institute of Technology &
Science, Bogarm (V),Keesara (M),R.R Dist.
Hyderabad.

L.Lal singh is
currently a PG
scholar of VLSI
System Design in
ECE Department. He
received B.TECH
degree from JNTU.

His current research interest includes
Analysis & Design of VLSI System Design.

Gurmeet
Typewritten Text
321

