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 ABSTRACT:  
 
      This paper introduces two novel 
architectures for parallel decimal 
multipliers. Our multipliers are based on a 
new algorithm for decimal carry–save 
multioperand addition that uses a novel 
BCD–4221 recoding for decimal digits. It 
significantly improves the area and latency 
of the partial product reduction tree with 
respect to previous proposals. We also 
present three schemes for fast and efficient 
generation of partial products in parallel. 
The recoding of the BCD–8421 multiplier 
operand into minimally redundant signed–
digit radix–10, radix–4 and radix–5 
representations using new recoders reduces 
the complexity of partial product generation. 
In addition, SD radix–4 and radix–5 
recodings allow the reuse of a conventional 
parallel binary radix–4 multiplier to perform 
combined binary/decimal multiplications. 
Evaluation results show that the proposed 
architectures have interesting area–delay 
figures compared to conventional Booth 
radix–4 and radix–8 parallel binary 
multipliers and other representative 
alternatives for decimal multiplication  
 
Keywords: Parallel multiplication, decimal 
hardware, overloaded BCD representation, 
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I. INTRODUCTION 
 

Providing hardware support for 
decimal arithmetic is becoming a topic of 
interest. Specifically, the revision of the 
IEEE–754 Standard for Floating–Point 

Arithmetic (IEEE– 754r) [1] already 
incorporates specifications for decimal 
arithmetic. Thus, it is expected that 
microprocessor manufacturers include 
decimal floating–point units in their 
products oriented to mainframe servers to 
satisfy the high performance demands of 
current financial, commercial and user– 
oriented applications [3].    
 

An important and frequent operation 
in decimal computations is multiplication. 
However, due to the inherent in-efficiency 
of decimal arithmetic implementations in 
binary logic, practically all the proposed 
decimal multipliers are sequential units [2, 
4, 7, 9, 11, 16]. Recently, the first 
implementation of a parallel decimal 
multiplier was presented in [8]. Parallel 
multipliers are used extensively in most of 
the binary floating–point units [10, 13] and 
are of interest for decimal applications to 
scale performance. In this paper, we 
introduce new methods for the efficient 
implementation of decimal parallel 
multiplication by a parallel generation of 
partial products and the reductionof these 
partial products using a novel decimal 
carry–save addition tree. We present the 
architectures of two different high–
performance parallel multipliers 
thatimplement these methods. The second 
architecture also allows an effective 
implementation of a combined 
binary/decimal multiplier. These high–
performance implementations have similar 
hardware complexity or a moderate 
increment in area with respect to the 
equivalent binary parallel multipliers. 
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II. Literature Survey  
 

BCD  is  a  decimal  representation  
of  a  number  directly  coded  in  binary,  
digit  by  digit.  For  example,  the  number  
(9321)10  =  (1001  0011  0010  0001) 
BCD.  It  can  be  seen  that  each  digit  of  
the  decimal  number is coded in binary and 
then concatenated to form the BCD  
representation  of  the  decimal  number.   
As  any  BCD  digit  lies  between  [0,  9]  
or  [0000,  1001],  multiplying  two  BCD  
digits  can  result in numbers between [0, 
81]. All the possible combinations can be  
represented  in  a  7-bit  binary  number  
when  multiplied,  (81) 10 or  (1010001)2  
being  the  highest.  In  BCD  multiplication  
where  4-bit  binary multipliers are used to 
multiply two BCD numbers X and Y  with 
digits, Xi and Yj , respectively , a partial 
product Pij is generated  of  the  form  (p6 
p5p4p3p2p1p0)2. Conversion  of  Pij from  
binary  to  a  BCD  number  BiCj where  π 
(Xi,  Yj)  =  10Bi +  Cj needs  fast  and   
efficient BCD converters. The binary to 
BCD conversion is generally  inefficient if 
the binary number is very large. Hence the 
conversion  can be done in parallel for every 
partial product after each BCD digit  is  
multiplied  as  shown  in  Figure 1  and  the  
resulting  BCD  numbers  after conversion 
can be added using BCD adders. 
 

 
 
Fig 1: Illustration of BCD conversion in 
BCD 

Multiplication consists of three 
stages: generation of partial products, fast 
reduction (addition) of partial products to a 

two operand and a final carry propagate 
addition. Decimal multiplication is more 
complex than binary multiplication mainly 
for two reasons: the higher range of decimal 
digits ([0,9]), which increments the number 
of multiplicand multiples and the 
inefficiency of representing decimal values 
in systems based on binary logic using 
BCD–8421 (since only 9 out of the 16 
possible 4–bit combinations represent a 
valid decimal digit). These issues 
complicate the generation and reduction of 
partial products. 

The first alternative [2, 4] generates 
and stores all the required multiplicand 
multiples. Next, multiples are distributed to 
the reduction stage through multiplexers 
controlled by the multiplier digits. This 
approach requires more than a cycle to 
generate some complex BCD-8421 
multiplicand multiples (3X,6X,7X,8X,9X). 
To avoid complicated multiples the 
multiplier can be recoded. In [8] each 
multiplier digit is recoded as Yi =YH5+YL, 
with YH∈{0,1}and YL∈{−2,−1,0,1,2}. 
Multiples 2X and 5X can be computed 
without a carry propagation over the whole 
number. Negative multiples requires an 
additional 9’s complement addition. The 
second approach generates only the partial 
product as needed using digit–by–digit 
lookup table methods [9, 16]. In a recent 
work [5], a magnitude range reduction of 
the operand digits by a radix–10 signed–
digit recoding (from [0,9] to [-5,5]) is 
suggested. This recoding of both operands 
speeds–up and simplifies the generation of 
partial products. Then, overlapped signed–
digit partial products 1 are generated using 
simplified tables and a set of multiplexers 
and xor gates. 

First attempts to improve decimal 
multiplication performed the reduction of 
decimal partial products using some scheme 
for decimal carry propagate addition such as 
direct decimal addition [12]. Proposals to 
perform the reduction of decimal partial 
products using multioperand carry–free 
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addition were suggested in [9] (carry–save) 
and [15] (signed– digit). Recently several 
techniques have been proposed that improve 
these previous works. In [5] a signed–digit 
decimal adder based on [15] is used. 
Redundant binary coded decimal (RBCD) 
adders [14] can also perform decimal carry–
free additions using a signed–digit 
representation of decimal digits (∈[−7,7]). 
In [11] a scheme of two levels of 3–2 binary 
carry–save adders (CSA) is used to add the 
partial products iteratively. Since it uses 
BCD–8421 to represent decimal digits, a 
digit addition of +6 or +12 (modulo 16) is 
required to obtain the decimal carry and to 
correct the sum digit. Logic for detection of 
decimal carries and sum digit is in the 
critical path (sum path). In order to 
eliminate decimal corrections from the 
critical path of the binary CSA, three 
different techniques were proposed in [6]. 
Among these proposals, non–speculative 
adders present the best area–delay figures 
and are the most suitable for multioperand 
addition using a CSA tree. Non–speculative 
adders reduce the BCD–8421 input 
operands using a binary CSA tree. 
Preliminary sum digits are then obtained 
using a level of 4–bit carry propagate 
adders. Finally, decimal carry and sum digit 
corrections are determined from the 
preliminary sum digit and the carries passed 
to the next more significant digit position in 
the binary CSA tree. Decimal correction is 
performed using combinational logic (its 
complexity depends on the number of input 
operands added) and a 3–bit carry propagate 
adder per digit. 

 
HIGH-LEVELARCHITECTURE 

 
The high-level block diagram of the 

proposed parallel architecture for dxd-digit 
BCD decimal integer and fixed-point 
multiplication is shown in Fig. 1. This 
architecture accepts conventional (non-
redundant) BCD inputs X, Y, generates 
redundant BCD partial products PP, and 

computes the BCD product P=XxY. It 
consists of the following three stages1 : (1) 
parallel generation of partial products coded 
in XS-3, including generation of 
multiplicand multiples and recoding of the 
multiplier operand, (2) recoding of partial 
products from XS-3 to the ODDS 
representation and subsequent reduction, 
and (3) final conversion to a non-
redundant2d-digit BCD product. 

 
 
 
Fig. 2. Combinational SD radix-10 
architecture. 
 
Stage 1) Decimal partial product generation:  

         A SD radix-10 recoding of the BCD 
multiplier has been used. This recoding 
produces a reduced number of partial 
products that leads to a significant reduction 
in the overall multiplier area. Therefore, the 
recoding of thed-digit multiplier Y into SD 
radix-10 digits Ybd-
1;...;Yb0,producesdpartial products PP[d-
1]...PP[0],one per digit; note that each Ybk 
recoded digit is represented in a 6–bit hot-
one code to be used as control input of the 
multiplexers for selecting the proper 
multiplicand multiple, {-5X;...; -
1X;0X;1X;...;5X}. An additional partial 
product PP[d] is produced by the most 
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significant multiplier digit after the 
recoding, so that the total number of partial 
products generated is dþ1  

In contrast to our previous SD radix-
10 implementations, 3X is obtained in a 
reduced constant time delay (≈3 XOR-gate 
delays) by using the XS-3 representation. 
Moreover, a negative multiple is generated 
from the correspondent positive one by a 
bitwise XOR operation. Consequently, the 
latency is reduced and the hardware 
implementation is simplified. The scheme 
proposed also produces 3X in constant time 
but using redundant signed-digit BCD 
arithmetic. 

Stage 2) Decimal partial product reduction.  

In this stage, the array of d+1 ODDS 
partial products are reduced to two 2d-digit 
words (A,B). Our proposal relies on a 
binary carry save adder tree to perform 
carry-free additions of the decimal partial 
products. The array ofdþ1ODDS partial 
products can be viewed as adjacent digit 
columns of height hdþ1. Since ODDS digits 
are encoded in binary, the rules for binary 
arithmetic apply within the digit bounds, 
and only carries generated between radix-10 
digits (4-bit columns) contribute to the 
decimal correction of the binary sum. That 
is, if a carry out is produced as a result of a 
4-bit (modulo 16) binary addition, the 
binary sum must be incremented by 6 at the 
appropriate position to obtain the correct 
decimal sum (modulo 10 addition). Two 
previous designs [12], [18] implement tree 
structures for the addition of ODDS 
operands. In the nonspeculative BCD adder 
[18], a combinational logic block is used to 
determine the sum correction after all the 
operands have been added in a binary CSA 
tree, with the maximum number of inputs 
limited to 19 BCD operands. 2 By contrast, 
in our method the sum correction is 
evaluated concurrently with the binary 
carry-save additions using columns of 
binary counters. Basically we count the 

number of carries  per decimal column and 
then a multiplication by 6 is performed (a 
correction by 6 for each carry-out from each 
column). The result is added as a correction 
term to the output of the binary carry-save 
reduction tree. This improves significantly 
the latency of the partial product reduction 
tree. Moreover, the proposed architecture 
accepts an arbitrary number of ODDS or 
BCD operand inputs. Some of PPR tree 
structures presented in [12] (the area-
improved PPR tree) also exploit a similar 
idea, but rely on a custom designed ODDS 
adder to perform some of the stage 
reductions. Our proposal aims to provide an 
optimal reuse of any binary CSA tree for 
multioperand decimal addition, as it was  
one in [31] for the 4221 and 5211 decimal 
codings. 

Stage 3) Conversion to (non-redundant) 
BCD. 

We consider the use of a BCD carry-
propagate adder [29] to perform the final 
conversion to a non-redundant BCD product 
P=A+B. The proposed architecture is a 2d-
digit hybrid parallel prefix/carry-select 
adder, the BCD Quaternary Tree adder (see 
Section 6). The sum of input digits Ai , Bi at 
each position i has to be in the range[0,18] 
so that at most one decimal carry is propagated 
to the next position i+1.    

Decimal partial product generation 

The partial product generation stage 
comprises the recoding of the multiplier to a 
SD radix-10 representation, the calculation 
of the multiplicand multiples in XS-3 code 
and the generation of the ODDS partial 
products. 
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Fig. 3. SD radix-10 generation of a partial 

product digit 

Decimal partial product reduction: 

The PPR tree consists of three parts: (1) 
a regular binary CSA tree to compute an 
estimation of the decimal partial product sum in 
a binary carry-save form (S, C), (2) a sum 
correction block to count the carries generated 
between the digit columns, and (3) a decimal 
digit 3:2 compressor which increments the 
carry-save sum according to the carries count to 
obtain the final double-word product (A; B), A 
being represented with excess-6 BCD digits and 
B being represented with BCD digits. The PPR 
tree can be viewed as adjacent columns of h 
ODDS digits each, h being the column height 
(see Fig. 4), and h≤d+1.  

 

Fig. 5. High-level architecture of the proposed 
decimal PPR tree (h inputs, 1-digit column). 

FINAL CONVERSION TO BCD 

The selected architecture is a2d-digit 
hybrid parallel prefix/ carry-select adder, the 
BCD Quaternary Tree adder [29]. The delay of 
this adder is slightly higher to the delay of a 
binary adder of8dbits with a similar topology. 
The decimal carries are computed using a carry 
prefix tree, while two conditional BCD digit 
sums are computed out of the critical path using 
4-bit digit adders which implements [Ai]+Bi+0 
and [Ai]+Bi +1. These conditional sums 
correspond to each one of the carry input values. 
If the conditional carry out from a digit is one, 
the digit adder performs a -6 subtraction. The 
selection of the appropriate conditional BCD 
digit sums is implemented with a final level of 
2:1multiplexers. To design the carry prefix tree 
we analyzed the signal arrival profile from the 
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PPRT tree, and considered the use of different 
prefix tree topologies to optimize the area for 
the minimum delay adder  

Conclusion 

In this paper we have presented several 
techniques to implement decimal parallel 
multiplication in hardware. We propose three 
different SD encodings for the multiplier that 
lead to fast parallel and simple generation of 
partial products. For partial product reduction 
we have developed a decimal carry–save 
algorithm based on a BCD–4221 representation 
of decimal digit operands. It makes possible the 
construction ofp:2decimal CSA trees that 
outperform the area–delay figures of existing 
proposals. Moreover, proposed techniques also 
allow the computation of combined 
binary/decimal multiplications with a moderate 
overhead. We have proposed an architecture for 
decimal SD radix–10 parallel multiplication and 
two combined architectures for binary/decimal 
SD radix–4 and binary SD radix–4/decimal SD 
radix–5 multiplication. The area–delay figures 
from a comparative study including 
conventional binary parallel multipliers and 
other representative decimal proposals show that 
our decimal SD radix–10 multiplier is an 
interesting option for high performance with 
moderate area. 
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