

 Volume 4, Issue 2 JULY 2015

IJRAET

AREA EFFICIENT RADIX-10
MULTIPLICATION FOR DSP APPLICATIONS

1 MD. ASHWAQ AHMED, PG Scholar in Embedded Systems & VLSI Design,
2G. SATHYAPRABHA, Assoc.Professor, ECE Department,

1mdashwaq22@gmail.com,
2sathyaprabhamtech@gmail.com ,

1,2 SLC's Institute of Engineering and Technology, RANGAREDDY,Telangana

 ABSTRACT:

 This paper introduces two novel
architectures for parallel decimal
multipliers. Our multipliers are based on a
new algorithm for decimal carry–save
multioperand addition that uses a novel
BCD–4221 recoding for decimal digits. It
significantly improves the area and latency
of the partial product reduction tree with
respect to previous proposals. We also
present three schemes for fast and efficient
generation of partial products in parallel.
The recoding of the BCD–8421 multiplier
operand into minimally redundant signed–
digit radix–10, radix–4 and radix–5
representations using new recoders reduces
the complexity of partial product generation.
In addition, SD radix–4 and radix–5
recodings allow the reuse of a conventional
parallel binary radix–4 multiplier to perform
combined binary/decimal multiplications.
Evaluation results show that the proposed
architectures have interesting area–delay
figures compared to conventional Booth
radix–4 and radix–8 parallel binary
multipliers and other representative
alternatives for decimal multiplication

Keywords: Parallel multiplication, decimal
hardware, overloaded BCD representation,
redundant excess-3 code, redundant
arithmetic

I. INTRODUCTION

Providing hardware support for
decimal arithmetic is becoming a topic of
interest. Specifically, the revision of the
IEEE–754 Standard for Floating–Point

Arithmetic (IEEE– 754r) [1] already
incorporates specifications for decimal
arithmetic. Thus, it is expected that
microprocessor manufacturers include
decimal floating–point units in their
products oriented to mainframe servers to
satisfy the high performance demands of
current financial, commercial and user–
oriented applications [3].

An important and frequent operation
in decimal computations is multiplication.
However, due to the inherent in-efficiency
of decimal arithmetic implementations in
binary logic, practically all the proposed
decimal multipliers are sequential units [2,
4, 7, 9, 11, 16]. Recently, the first
implementation of a parallel decimal
multiplier was presented in [8]. Parallel
multipliers are used extensively in most of
the binary floating–point units [10, 13] and
are of interest for decimal applications to
scale performance. In this paper, we
introduce new methods for the efficient
implementation of decimal parallel
multiplication by a parallel generation of
partial products and the reductionof these
partial products using a novel decimal
carry–save addition tree. We present the
architectures of two different high–
performance parallel multipliers
thatimplement these methods. The second
architecture also allows an effective
implementation of a combined
binary/decimal multiplier. These high–
performance implementations have similar
hardware complexity or a moderate
increment in area with respect to the
equivalent binary parallel multipliers.

Gurmeet
Typewritten Text
279

Gurmeet
Typewritten Text

 Volume 4, Issue 2 JULY 2015

IJRAET

II. Literature Survey

BCD is a decimal representation
of a number directly coded in binary,
digit by digit. For example, the number
(9321)10 = (1001 0011 0010 0001)
BCD. It can be seen that each digit of
the decimal number is coded in binary and
then concatenated to form the BCD
representation of the decimal number.
As any BCD digit lies between [0, 9]
or [0000, 1001], multiplying two BCD
digits can result in numbers between [0,
81]. All the possible combinations can be
represented in a 7-bit binary number
when multiplied, (81) 10 or (1010001)2
being the highest. In BCD multiplication
where 4-bit binary multipliers are used to
multiply two BCD numbers X and Y with
digits, Xi and Yj , respectively , a partial
product Pij is generated of the form (p6
p5p4p3p2p1p0)2. Conversion of Pij from
binary to a BCD number BiCj where π
(Xi, Yj) = 10Bi + Cj needs fast and
efficient BCD converters. The binary to
BCD conversion is generally inefficient if
the binary number is very large. Hence the
conversion can be done in parallel for every
partial product after each BCD digit is
multiplied as shown in Figure 1 and the
resulting BCD numbers after conversion
can be added using BCD adders.

Fig 1: Illustration of BCD conversion in
BCD

Multiplication consists of three
stages: generation of partial products, fast
reduction (addition) of partial products to a

two operand and a final carry propagate
addition. Decimal multiplication is more
complex than binary multiplication mainly
for two reasons: the higher range of decimal
digits ([0,9]), which increments the number
of multiplicand multiples and the
inefficiency of representing decimal values
in systems based on binary logic using
BCD–8421 (since only 9 out of the 16
possible 4–bit combinations represent a
valid decimal digit). These issues
complicate the generation and reduction of
partial products.

The first alternative [2, 4] generates
and stores all the required multiplicand
multiples. Next, multiples are distributed to
the reduction stage through multiplexers
controlled by the multiplier digits. This
approach requires more than a cycle to
generate some complex BCD-8421
multiplicand multiples (3X,6X,7X,8X,9X).
To avoid complicated multiples the
multiplier can be recoded. In [8] each
multiplier digit is recoded as Yi =YH5+YL,
with YH∈{0,1}and YL∈{−2,−1,0,1,2}.
Multiples 2X and 5X can be computed
without a carry propagation over the whole
number. Negative multiples requires an
additional 9’s complement addition. The
second approach generates only the partial
product as needed using digit–by–digit
lookup table methods [9, 16]. In a recent
work [5], a magnitude range reduction of
the operand digits by a radix–10 signed–
digit recoding (from [0,9] to [-5,5]) is
suggested. This recoding of both operands
speeds–up and simplifies the generation of
partial products. Then, overlapped signed–
digit partial products 1 are generated using
simplified tables and a set of multiplexers
and xor gates.

First attempts to improve decimal
multiplication performed the reduction of
decimal partial products using some scheme
for decimal carry propagate addition such as
direct decimal addition [12]. Proposals to
perform the reduction of decimal partial
products using multioperand carry–free

Gurmeet
Typewritten Text
280

 Volume 4, Issue 2 JULY 2015

IJRAET

addition were suggested in [9] (carry–save)
and [15] (signed– digit). Recently several
techniques have been proposed that improve
these previous works. In [5] a signed–digit
decimal adder based on [15] is used.
Redundant binary coded decimal (RBCD)
adders [14] can also perform decimal carry–
free additions using a signed–digit
representation of decimal digits (∈[−7,7]).
In [11] a scheme of two levels of 3–2 binary
carry–save adders (CSA) is used to add the
partial products iteratively. Since it uses
BCD–8421 to represent decimal digits, a
digit addition of +6 or +12 (modulo 16) is
required to obtain the decimal carry and to
correct the sum digit. Logic for detection of
decimal carries and sum digit is in the
critical path (sum path). In order to
eliminate decimal corrections from the
critical path of the binary CSA, three
different techniques were proposed in [6].
Among these proposals, non–speculative
adders present the best area–delay figures
and are the most suitable for multioperand
addition using a CSA tree. Non–speculative
adders reduce the BCD–8421 input
operands using a binary CSA tree.
Preliminary sum digits are then obtained
using a level of 4–bit carry propagate
adders. Finally, decimal carry and sum digit
corrections are determined from the
preliminary sum digit and the carries passed
to the next more significant digit position in
the binary CSA tree. Decimal correction is
performed using combinational logic (its
complexity depends on the number of input
operands added) and a 3–bit carry propagate
adder per digit.

HIGH-LEVELARCHITECTURE

The high-level block diagram of the

proposed parallel architecture for dxd-digit
BCD decimal integer and fixed-point
multiplication is shown in Fig. 1. This
architecture accepts conventional (non-
redundant) BCD inputs X, Y, generates
redundant BCD partial products PP, and

computes the BCD product P=XxY. It
consists of the following three stages1 : (1)
parallel generation of partial products coded
in XS-3, including generation of
multiplicand multiples and recoding of the
multiplier operand, (2) recoding of partial
products from XS-3 to the ODDS
representation and subsequent reduction,
and (3) final conversion to a non-
redundant2d-digit BCD product.

Fig. 2. Combinational SD radix-10
architecture.

Stage 1) Decimal partial product generation:

 A SD radix-10 recoding of the BCD
multiplier has been used. This recoding
produces a reduced number of partial
products that leads to a significant reduction
in the overall multiplier area. Therefore, the
recoding of thed-digit multiplier Y into SD
radix-10 digits Ybd-
1;...;Yb0,producesdpartial products PP[d-
1]...PP[0],one per digit; note that each Ybk
recoded digit is represented in a 6–bit hot-
one code to be used as control input of the
multiplexers for selecting the proper
multiplicand multiple, {-5X;...; -
1X;0X;1X;...;5X}. An additional partial
product PP[d] is produced by the most

Gurmeet
Typewritten Text
281

 Volume 4, Issue 2 JULY 2015

IJRAET

significant multiplier digit after the
recoding, so that the total number of partial
products generated is dþ1

In contrast to our previous SD radix-
10 implementations, 3X is obtained in a
reduced constant time delay (≈3 XOR-gate
delays) by using the XS-3 representation.
Moreover, a negative multiple is generated
from the correspondent positive one by a
bitwise XOR operation. Consequently, the
latency is reduced and the hardware
implementation is simplified. The scheme
proposed also produces 3X in constant time
but using redundant signed-digit BCD
arithmetic.

Stage 2) Decimal partial product reduction.

In this stage, the array of d+1 ODDS
partial products are reduced to two 2d-digit
words (A,B). Our proposal relies on a
binary carry save adder tree to perform
carry-free additions of the decimal partial
products. The array ofdþ1ODDS partial
products can be viewed as adjacent digit
columns of height hdþ1. Since ODDS digits
are encoded in binary, the rules for binary
arithmetic apply within the digit bounds,
and only carries generated between radix-10
digits (4-bit columns) contribute to the
decimal correction of the binary sum. That
is, if a carry out is produced as a result of a
4-bit (modulo 16) binary addition, the
binary sum must be incremented by 6 at the
appropriate position to obtain the correct
decimal sum (modulo 10 addition). Two
previous designs [12], [18] implement tree
structures for the addition of ODDS
operands. In the nonspeculative BCD adder
[18], a combinational logic block is used to
determine the sum correction after all the
operands have been added in a binary CSA
tree, with the maximum number of inputs
limited to 19 BCD operands. 2 By contrast,
in our method the sum correction is
evaluated concurrently with the binary
carry-save additions using columns of
binary counters. Basically we count the

number of carries per decimal column and
then a multiplication by 6 is performed (a
correction by 6 for each carry-out from each
column). The result is added as a correction
term to the output of the binary carry-save
reduction tree. This improves significantly
the latency of the partial product reduction
tree. Moreover, the proposed architecture
accepts an arbitrary number of ODDS or
BCD operand inputs. Some of PPR tree
structures presented in [12] (the area-
improved PPR tree) also exploit a similar
idea, but rely on a custom designed ODDS
adder to perform some of the stage
reductions. Our proposal aims to provide an
optimal reuse of any binary CSA tree for
multioperand decimal addition, as it was
one in [31] for the 4221 and 5211 decimal
codings.

Stage 3) Conversion to (non-redundant)
BCD.

We consider the use of a BCD carry-
propagate adder [29] to perform the final
conversion to a non-redundant BCD product
P=A+B. The proposed architecture is a 2d-
digit hybrid parallel prefix/carry-select
adder, the BCD Quaternary Tree adder (see
Section 6). The sum of input digits Ai , Bi at
each position i has to be in the range[0,18]
so that at most one decimal carry is propagated
to the next position i+1.

Decimal partial product generation

The partial product generation stage
comprises the recoding of the multiplier to a
SD radix-10 representation, the calculation
of the multiplicand multiples in XS-3 code
and the generation of the ODDS partial
products.

Gurmeet
Typewritten Text
282

 Volume 4, Issue 2 JULY 2015

IJRAET

Fig. 3. SD radix-10 generation of a partial

product digit

Decimal partial product reduction:

The PPR tree consists of three parts: (1)
a regular binary CSA tree to compute an
estimation of the decimal partial product sum in
a binary carry-save form (S, C), (2) a sum
correction block to count the carries generated
between the digit columns, and (3) a decimal
digit 3:2 compressor which increments the
carry-save sum according to the carries count to
obtain the final double-word product (A; B), A
being represented with excess-6 BCD digits and
B being represented with BCD digits. The PPR
tree can be viewed as adjacent columns of h
ODDS digits each, h being the column height
(see Fig. 4), and h≤d+1.

Fig. 5. High-level architecture of the proposed
decimal PPR tree (h inputs, 1-digit column).

FINAL CONVERSION TO BCD

The selected architecture is a2d-digit
hybrid parallel prefix/ carry-select adder, the
BCD Quaternary Tree adder [29]. The delay of
this adder is slightly higher to the delay of a
binary adder of8dbits with a similar topology.
The decimal carries are computed using a carry
prefix tree, while two conditional BCD digit
sums are computed out of the critical path using
4-bit digit adders which implements [Ai]+Bi+0
and [Ai]+Bi +1. These conditional sums
correspond to each one of the carry input values.
If the conditional carry out from a digit is one,
the digit adder performs a -6 subtraction. The
selection of the appropriate conditional BCD
digit sums is implemented with a final level of
2:1multiplexers. To design the carry prefix tree
we analyzed the signal arrival profile from the

Gurmeet
Typewritten Text
283

 Volume 4, Issue 2 JULY 2015

IJRAET

PPRT tree, and considered the use of different
prefix tree topologies to optimize the area for
the minimum delay adder

Conclusion

In this paper we have presented several
techniques to implement decimal parallel
multiplication in hardware. We propose three
different SD encodings for the multiplier that
lead to fast parallel and simple generation of
partial products. For partial product reduction
we have developed a decimal carry–save
algorithm based on a BCD–4221 representation
of decimal digit operands. It makes possible the
construction ofp:2decimal CSA trees that
outperform the area–delay figures of existing
proposals. Moreover, proposed techniques also
allow the computation of combined
binary/decimal multiplications with a moderate
overhead. We have proposed an architecture for
decimal SD radix–10 parallel multiplication and
two combined architectures for binary/decimal
SD radix–4 and binary SD radix–4/decimal SD
radix–5 multiplication. The area–delay figures
from a comparative study including
conventional binary parallel multipliers and
other representative decimal proposals show that
our decimal SD radix–10 multiplier is an
interesting option for high performance with
moderate area.

References

[1] IEEE standard for floating–point arithmetic.
IEEE Standards Committee, Oct. 2006.
[2] F. Y. Busaba, T. Slegel, S. Carlough, C.
Krygowski, and J. G. Rell. The design of the
fixed point unit for the z990 microprocessor.
InProc. ACM Great Lakes14th Symposium on
VLSI, pages 364–367, Apr. 2004.
[3] M. F. Cowlishaw. Decimal floating-point:
Algorism for computers. InProc. IEEE16th
Symposium on Computer Arithmetic, pages
104–111, July 2003.
[4] M. A. Erle and M. J. Schulte. Decimal
multiplication via carry-save addition. InProc.
IEEE Int’l Conference on Application-Specific
Systems, Architectures, and Processors, pages
348–358, June 2003.
[5] M. A. Erle, E. M. Schwarz, and M. J.
Schulte. Decimal multiplication with efficient
partial product generation. In Proc. IEEE17th

Symposium on Computer Arithmetic, pages 21–
28, June 2005.
[6] R. D. Kenney and M. J. Schulte. High-speed
multioperand decimal adders.IEEE Trans. on
Computers, 54(8):953–963, Aug. 2005.
[7] R. D. Kenney, M. J. Schulte, and M. A. Erle.
High-frequency decimal multiplier. InProc.
IEEE Int’l Conference on Computer Design:
VLSI in Computers and Processors, pages 26–
29, Oct. 2004.
[8] T. Lang and A. Nannarelli. A radix-10
combinational multiplier. InProc.40th Asilomar
Conference on Signals, Systems, and
Computers, pages 313–317, Oct. 2006.
[9] R. H. Larson. High-speed multiply using
four input carrysave adder. IBM Tech.
Disclosure Bulletin, 16(7):2053–2054, Dec.
1973.
[10] N. Ohkubo and M. Suzuki. A 4.4 ns CMOS
54x54–bit multiplier using pass-transistor
multiplexer. IEEE Journal of Solid State
Circuits, 30(3):251–256, Mar. 1995.

Gurmeet
Typewritten Text
284

 Volume 4, Issue 2 JULY 2015

IJRAET

