
 Volume 4, Issue 2 JUNE 2015

IJRAET

VLSI IMPLEMENTATION OF ALU USING
QUATERNARY SIGNED DIGIT FOR
SIGNED AND UNSIGNED NUMBERS

MADDHI ANITHA (1) ,A.PRADEEP KUMAR(2)
M.TECH,SCHOLAR, EMBEDDED SYSTEMS, SR ENGINEERING COLLEGE(1)

M.TECH, ASST.PROFISSOR, SR ENGINEERING COLLEGE (2)

Abstract: In this paper, we proposed a new number
system for ALU. In binary number system carry is a
major problem in arithmetical operation. We have to
suffer O(n) carry propagation delay in n-bit binary
operation. To overcome this problem signed digit is
required for carry free arithmetical operation. Carry
look ahead helps to improve the propagation delay to
O(log n), but is bounded to a small number of digits
due to the complexity of the circuit. A carry-free
arithmetic operation can be achieved using a higher
radix number system such as Quaternary Signed Digit
(QSD). In QSD, each digit can be represented by a
number from -3 to 3. This number system allows
multiple representations of any integer. By exploiting
this feature, we can design an adder without ripple
carry. Quaternary Signed Digit (QSD) have a major
contribution in higher radix (=4) carry free arithmetical
operation. For digital implementation, the signed digit
quaternary numbers are represented using 3-bit 2’s
compliment notation. In this paper, a simple and new
technique of binary (2’s compliment) to QSD
conversion is proposed and described.
.
Keywords: quaternary sign digit(QSD), fast
computation, multiplier, quaternary logic,ALU.

I. Introduction

 The various digital systems such as computers and
signal processors, arithmetic operation plays important
role. The speed of system increases with increasing the
speed of addition and multiplication. In conventional
binary number system, carry may propagate all the
way from the least significant digit to the most
significant. Thus the addition time is dependent on the
word length.

 Arithmetic operations are widely used and play
important roles in various digital systems such as
computers and signal processors. QSD number
representation has attracted the interest of many
researchers.
Additionally, recent advances in technologies for
integrated circuits make large scale arithmetic circuits
suitable for VLSI implementation [1][2]. However,
arithmetic operations still suffer from known problems
including limited number of bits propagation time
delay, and circuit complexity.

 In this paper, we propose a high speed QSD
arithmetic logic unit which is capable of carry free
addition, borrow free subtraction, up-down count and
multiply operations.

 The QSD addition/subtraction operation employs a
fixed number of minterms for any operand size. The
multiplier is composed of partial product generators
and adders.

For convenience of testing and to verify results, we
choose to implement the units using a programmable
logic device.

II. Technique Of Conversion From Binary Number
To QSD Number

 1-digit QSD can be represented by one 3-bit
binary equivalent as follows:

Gurmeet
Typewritten Text

Gurmeet
Typewritten Text
32

 Volume 4, Issue 2 JUNE 2015

IJRAET

 So we have to split the binary data (1) q− times
(as example, for conversion of 2-bit quaternary
number, the splitting is 1 time; for converting 3-digit
quaternary number the split is 2-times and so on). In
each such splitting one extra bit is generated. So, the
required binary bits for conversion to its QSD
equivalent (n) = (Total numbers of bits generated after
divisions) – (extra bit generated due to splitting).

 So, number of bits of the binary number should
be 3, 5, 7, 9 etc for converting it to its equivalent QSD
number. Now every 3-bit can be converted to its
equivalent QSD according to the equation (2). The
following two examples as given below will help to
make the things clear.

• Let (-155)10 = (101100101)2 have be converted to

its equivalent QSD. ‘(101100101)2 ‘is 9-bit binary
data. Its 3rd bit is 1, 5th bit is 0 and 7th bit is 1. So
from the equation (3) we can say that, its QSD
equivalent is of 4-digit. Hence according to the
splitting technique stated above the binary data
can be expressed as follows.

 So the QSD equivalent of (101100101)2 is .

 So to convert n-bit binary data to its equivalent q-
digit QSD data, we have to convert this n-bit binary
data into 3q-bit binary data. To achieve the target, we
have to split the 3rd, 5th, 7th bit…. i.e. odd bit (from
the LSB to MSB) into two portions. But we cannot
split the MSB. If the odd bit is 1 then, it is split into 1
& 0 and if it is 0 then, it is split into 0 & 0. An example
makes it clear, the splitting technique of a binary
number (1101101)2is shown below:

• Let (49)10 = (0110001)2 is to be converted
 to its equivalent QSD. ’ (0110001)2’ is 7-bit
 binary number. According to the previous
 discussion the conversion is as follows

 So the QSD equivalent of (110001)2is (301)4.

III. Adder/Subtractor Design

 Addition is the most important arithmetic
operation in digital computation. A carry-free addition
is highly desirable as the number of digits becomes
large. We can achieve carry-free addition by exploiting
the redundancy of QSD numbers and the QSD
addition.

 There are two steps involved in the carry-free
addition. The first step generates an intermediate carry
and sum from the addend and augend. The second step
combines the intermediate sum of the current digit
with the carry of the lower significant digit. To prevent
carry from further rippling, we define two rules. The

Gurmeet
Typewritten Text
33

 Volume 4, Issue 2 JUNE 2015

IJRAET

first rule states that the magnitude of the intermediate
sum must be less than or equal to 2. The second rule
states that the magnitude of the carry must be less than
or equal to 1. Consequently, the magnitude of the
second step output cannot be greater than 3 which can
be represented by a single-digit QSD number; hence
no further carry is required. In step 1, all possible input
pairs of the addend and augend are considered. The
output ranges from -6 to 6 as shown in Table 1.

Table 1. The outputs of all possible combinations of a

pair of addend (A) and augend (B).

 The range of the output is from -6 to 6 which
can be represented in the intermediate carry and sum in
QSD format as show in Table 2. Some numbers have
multiple representations, but only those that meet the
defined rules are chosen. The chosen intermediate
carry and sum are listed in the last column of Table 2.

Table 2. The intermediate carry and sum
between -6 to 6.

Both inputs and outputs can be encoded in 3-bit 2’s

complement binary number.

The mapping between the inputs, addend and augend,

and the outputs, the intermediate carry and sum are

shown in binary format in Table 3.

Since the intermediate carry is always between -1 and

1, it requires only a 2-bit binary representation. Finally,

five 6-variable Boolean expressions can be extracted.

 In step 2, the intermediate carry from the lower

significant digit is added to the sum of the current digit

to produce the final result.

The addition in this step produces no carry because the

current digit can always absorb the carry-in from the

lower digit.

Table 4 shows all possible combinations of the

summation between the intermediate carry and the

sum.

Figure 1. The intermediate carry and sum generator.

Table 3. The mapping between the inputs and

outputsof the intermediate carry and sum

Gurmeet
Typewritten Text
34

 Volume 4, Issue 2 JUNE 2015

IJRAET

Table 4. The outputs of all possible combinations of a
pair of intermediate carry (A) and sum (B).

Table 5. The mapping between inputs and outputs of

the second step QSD adder.

 Three 5-variable Boolean expressions can be
extracted from Table 5. Figure 2 shows the diagram of
the second step adder. The implementation of an n-
digit QSD adder requires n QSD carry and sum
generators and n-1 second step adders as shown in
Figure 2. The
result turns out to be an n+1-digit number.

Figure 2. n-digit QSD adder.

IV.Multiplier Design

 There are generally two methods for a

Gurmeet
Typewritten Text
35

 Volume 4, Issue 2 JUNE 2015

IJRAET

multiplication operation: parallel and iterative. QSD
multiplication can be implemented in both ways,
requiring a QSD partial product generator and QSD
adder as basic components. A partial product, Mi, is a
result of multiplication between an n-digit input, An-1-
A0, with a single digit input, Bi, where i = 0..n-1. The
primitive component of the partial product generator is
a single-digit multiplication unit whose functionality
can be expressed as shown in Table 6.

Table 6. The outputs of all possible ombinations of a
pair of multiplicand (A) and multiplier (B).

 The single-digit multiplication produces M as a
result and C as a carry to be combined with M of the
next digit. The range of both outputs, M and C, is
between -2 and 2. According to Table 8, and using the
same procedure as in creating Table 3 and 5, the
mapping between the 6-bit input, Aand B, to the 6-bit
output, Mand C, results in six 6-varible Boolean
expressions which represent a single-digit
multiplication operation. The diagram of a single-digit
QSD multiplier is shown in Figure 3
.

Figure 3. A single-digit QSD multiplier

 The implementation of an n-digit partial product
generator uses nunits of the single-digit QSD
multiplier. Gathering all the outputs toproduce a partial
product result presents a small challenge. The QSD
An nxn-digit QSD multiplication requires npartial

representation of a single digit multiplication output,
shown in Table 7, contains a carry-out of magnitude 2
when the output is either -9 or 9. This prohibits the use
of the second step QSD adder alone as a gatherer. In
fact, we can use the complete QSD adder from the
previous section as the gatherer. Furthermore, the
intermediate carry and sum circuit can be optimized by
not considering the input of magnitude 3. The QSD
partial product generator implementation is shown in
Figure 4.

Figure 4. The n-digit QSD partial product generator.

Table 7. The QSD representation of a single-digit

multiplication output.

Gurmeet
Typewritten Text
36

 Volume 4, Issue 2 JUNE 2015

IJRAET

product terms. In an iterative implementation, a 2ndigit
QSD adder is used to perform add-shift operations
between the partial product generator and the
accumulator. After niterations, the multiplication is
complete. In contrast, a parallel implementation
requires npartial product circuits and n-1 QSD adder
units. A binary reduction sum is applied to reduce the
propagation delay to O(log n).

V. Results

 The QSD adder written in VHDL, compiled and
simulation using modelsim. The QSD adder and
multiplier circuit simulated and synthesized on
SPARTAN3E FPGA using XilinxISE. The QSD adder
multiplier circuit simulated and synthesized. The
simulated result for 4-bit QSD adders multiplier as
shown in below.

 Figure 5: Simulated result QSD adder

Figure 6: Simulated result QSD multiplier

[2] A.A.S. Awwal and J.U. Ahmed,“fast carry free

Figure 7:RTL Schematic of QSD multiplier

 Figure 8:SummaryQSD multiplier

VI. Conclusion

 In this paper the implementation of QSD
addition and multiplication are presented. The
performance of the QSD ALU design is better
comparing to other designs. The complexity of the
QSD adder is linearly proportional to the number of
bits which are of the same order as the simplest adder,
the ripple carry adder. This QSD adder can be used as
a building block for other arithmetic operations such as
multiplication, division, square root, etc. With the QSD
addition scheme, some well-known arithmetic
algorithms can be directly implemented.

VII.References

[1] I. M. Thoidis, D. Soudris, J. M. Fernandez, A.
Thanailakis,“The circuit design of multiple-
valuedlogic voltage-mode adders,” 2001 IEEE

Gurmeet
Typewritten Text
37

 Volume 4, Issue 2 JUNE 2015

IJRAET

adder design using QSD number system” proceedings
of the IEEE 1993 national aerospace and electronic
conference, vol 2,pp 1085-1090,1993.

[3] Behrooz perhami “generalized signed digit number
systems, a unifying frame work for redundant number
reperesentation “.IEEE transactions on computers,vol
39,no.1,pp.89-98,January 19990.

[4] O. Ishizuka, A. Ohta, K. Tannno, Z. Tang, D.
Handoko, “VLSI design of a quaternary multiplier
with direct generation of partial products,”Proceedings
of the 27th International Symposium on Multiple-
Valued Logic, pp. 169-174, 1997.

[5] A.A.S Awwal, Syed M. Munir, A.T.M. Shafiqul
Khalid, Howard E.Michel and O. N. Garcia,
“Multivalued Optical Parallel Computation Using An
Optical Programmable Logic Array”, Informatica, vol.
24, No. 4, pp. 467-473, 2000.

[6] F. Kharbash and G. M. Chaudhry, “Reliable Binary
Signed Digit Number Adder Design”, IEEE Computer
Society Annual Symposium on VLSI, pp 479-484,
2007.

[7] John Moskal, Erdal Oruklu and Jafar Saniie,
“Design and Synthesis of a Carry-Free Signed-Digit
Decimal Adder”, IEEE International
symposium on Circuits and Systems, pp 1089-1092,
2007.

[8] Kai Hwang, “Computer Arithmetic Principles,
Architecture and Design”, ISBN 0-471-03496-7, John
Wiley & Sons, 1979.

Gurmeet
Typewritten Text
38

